nguyennghia0902's picture
Training in progress epoch 13
1971aa0
|
raw
history blame
4.55 kB
metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
  - generated_from_keras_callback
model-index:
  - name: nguyennghia0902/electra-small-discriminator_0.0005_32_15e
    results: []

nguyennghia0902/electra-small-discriminator_0.0005_32_15e

This model is a fine-tuned version of google/electra-small-discriminator on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.6702
  • Train End Logits Accuracy: 0.8166
  • Train Start Logits Accuracy: 0.7889
  • Validation Loss: 0.2710
  • Validation End Logits Accuracy: 0.9236
  • Validation Start Logits Accuracy: 0.9152
  • Epoch: 13

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 23445, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train End Logits Accuracy Train Start Logits Accuracy Validation Loss Validation End Logits Accuracy Validation Start Logits Accuracy Epoch
3.3489 0.2750 0.2432 2.6409 0.3858 0.3668 0
2.7567 0.3772 0.3444 2.3037 0.4607 0.4455 1
2.5118 0.4254 0.3927 2.0684 0.5046 0.4834 2
2.3234 0.4624 0.4283 1.8489 0.5461 0.5257 3
2.1433 0.4977 0.4608 1.6848 0.5907 0.5742 4
1.9832 0.5289 0.4980 1.4704 0.6378 0.6177 5
1.8204 0.5619 0.5290 1.2837 0.6769 0.6665 6
1.6387 0.5991 0.5696 1.0838 0.7217 0.7115 7
1.4657 0.6379 0.6048 0.9057 0.7589 0.7562 8
1.2902 0.6729 0.6458 0.7410 0.8034 0.7975 9
1.1103 0.7149 0.6867 0.5707 0.8407 0.8374 10
0.9500 0.7493 0.7214 0.4523 0.8761 0.8660 11
0.7931 0.7855 0.7606 0.3483 0.9018 0.8924 12
0.6702 0.8166 0.7889 0.2710 0.9236 0.9152 13

Framework versions

  • Transformers 4.39.3
  • TensorFlow 2.15.0
  • Datasets 2.18.0
  • Tokenizers 0.15.2