metadata
license: apache-2.0
base_model: google/electra-small-discriminator
tags:
- generated_from_keras_callback
model-index:
- name: nguyennghia0902/electra-small-discriminator_0.0005_32_15e
results: []
nguyennghia0902/electra-small-discriminator_0.0005_32_15e
This model is a fine-tuned version of google/electra-small-discriminator on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.6702
- Train End Logits Accuracy: 0.8166
- Train Start Logits Accuracy: 0.7889
- Validation Loss: 0.2710
- Validation End Logits Accuracy: 0.9236
- Validation Start Logits Accuracy: 0.9152
- Epoch: 13
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 23445, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train End Logits Accuracy | Train Start Logits Accuracy | Validation Loss | Validation End Logits Accuracy | Validation Start Logits Accuracy | Epoch |
---|---|---|---|---|---|---|
3.3489 | 0.2750 | 0.2432 | 2.6409 | 0.3858 | 0.3668 | 0 |
2.7567 | 0.3772 | 0.3444 | 2.3037 | 0.4607 | 0.4455 | 1 |
2.5118 | 0.4254 | 0.3927 | 2.0684 | 0.5046 | 0.4834 | 2 |
2.3234 | 0.4624 | 0.4283 | 1.8489 | 0.5461 | 0.5257 | 3 |
2.1433 | 0.4977 | 0.4608 | 1.6848 | 0.5907 | 0.5742 | 4 |
1.9832 | 0.5289 | 0.4980 | 1.4704 | 0.6378 | 0.6177 | 5 |
1.8204 | 0.5619 | 0.5290 | 1.2837 | 0.6769 | 0.6665 | 6 |
1.6387 | 0.5991 | 0.5696 | 1.0838 | 0.7217 | 0.7115 | 7 |
1.4657 | 0.6379 | 0.6048 | 0.9057 | 0.7589 | 0.7562 | 8 |
1.2902 | 0.6729 | 0.6458 | 0.7410 | 0.8034 | 0.7975 | 9 |
1.1103 | 0.7149 | 0.6867 | 0.5707 | 0.8407 | 0.8374 | 10 |
0.9500 | 0.7493 | 0.7214 | 0.4523 | 0.8761 | 0.8660 | 11 |
0.7931 | 0.7855 | 0.7606 | 0.3483 | 0.9018 | 0.8924 | 12 |
0.6702 | 0.8166 | 0.7889 | 0.2710 | 0.9236 | 0.9152 | 13 |
Framework versions
- Transformers 4.39.3
- TensorFlow 2.15.0
- Datasets 2.18.0
- Tokenizers 0.15.2