Initial upload of LibreFlux ControlNet pipeline
Browse files- __init__.py +5 -0
- backup_pipeline.py +0 -0
- controlnet/__init__.py +0 -0
- controlnet/config.json +20 -0
- controlnet/diffusion_pytorch_model.safetensors +3 -0
- controlnet/net.py +1507 -0
- model_index.json +36 -0
- pipeline.py +973 -0
- scheduler/scheduler_config.json +11 -0
- text_encoder/config.json +25 -0
- text_encoder/model.safetensors +3 -0
- text_encoder_2/config.json +32 -0
- text_encoder_2/model-00001-of-00002.safetensors +3 -0
- text_encoder_2/model-00002-of-00002.safetensors +3 -0
- text_encoder_2/model.safetensors.index.json +226 -0
- tokenizer/merges.txt +0 -0
- tokenizer/special_tokens_map.json +30 -0
- tokenizer/tokenizer_config.json +30 -0
- tokenizer/vocab.json +0 -0
- tokenizer_2/special_tokens_map.json +125 -0
- tokenizer_2/spiece.model +3 -0
- tokenizer_2/tokenizer.json +0 -0
- tokenizer_2/tokenizer_config.json +940 -0
- transformer/__init__.py +0 -0
- transformer/config.json +19 -0
- transformer/diffusion_pytorch_model-00001-of-00003.safetensors +3 -0
- transformer/diffusion_pytorch_model-00002-of-00003.safetensors +3 -0
- transformer/diffusion_pytorch_model-00003-of-00003.safetensors +3 -0
- transformer/diffusion_pytorch_model.safetensors.index.json +0 -0
- transformer/trans.py +766 -0
- vae/config.json +37 -0
- vae/diffusion_pytorch_model.safetensors +3 -0
__init__.py
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .pipeline import (
|
| 2 |
+
LibreFluxControlNetPipeline,
|
| 3 |
+
LibreFluxTransformer2DModel,
|
| 4 |
+
LibreFluxControlNetModel,
|
| 5 |
+
)
|
backup_pipeline.py
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
controlnet/__init__.py
ADDED
|
File without changes
|
controlnet/config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "FluxControlNetModel",
|
| 3 |
+
"_diffusers_version": "0.32.0",
|
| 4 |
+
"attention_head_dim": 128,
|
| 5 |
+
"axes_dims_rope": [
|
| 6 |
+
16,
|
| 7 |
+
56,
|
| 8 |
+
56
|
| 9 |
+
],
|
| 10 |
+
"conditioning_embedding_channels": null,
|
| 11 |
+
"guidance_embeds": true,
|
| 12 |
+
"in_channels": 64,
|
| 13 |
+
"joint_attention_dim": 4096,
|
| 14 |
+
"num_attention_heads": 24,
|
| 15 |
+
"num_layers": 2,
|
| 16 |
+
"num_mode": null,
|
| 17 |
+
"num_single_layers": 4,
|
| 18 |
+
"patch_size": 1,
|
| 19 |
+
"pooled_projection_dim": 768
|
| 20 |
+
}
|
controlnet/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:06e84cb264fc8bf98cc6c1ed5e53a606d061c4440c5ba9164f941dfce4f054b6
|
| 3 |
+
size 2739920936
|
controlnet/net.py
ADDED
|
@@ -0,0 +1,1507 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
#
|
| 15 |
+
# This was modied from the control net repo
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import inspect
|
| 19 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel
|
| 22 |
+
|
| 23 |
+
import numpy as np
|
| 24 |
+
import torch
|
| 25 |
+
from transformers import (
|
| 26 |
+
CLIPTextModel,
|
| 27 |
+
CLIPTokenizer,
|
| 28 |
+
T5EncoderModel,
|
| 29 |
+
T5TokenizerFast,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 33 |
+
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
|
| 34 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
| 35 |
+
### MERGEING THESE ###
|
| 36 |
+
# from src.models.transformer import FluxTransformer2DModel
|
| 37 |
+
# from src.models.controlnet_flux import FluxControlNetModel
|
| 38 |
+
#############
|
| 39 |
+
|
| 40 |
+
##########################################
|
| 41 |
+
########### ATTENTION MERGE ##############
|
| 42 |
+
##########################################
|
| 43 |
+
|
| 44 |
+
import torch
|
| 45 |
+
from torch import Tensor, FloatTensor
|
| 46 |
+
from torch.nn import functional as F
|
| 47 |
+
from einops import rearrange
|
| 48 |
+
from diffusers.models.attention_processor import Attention
|
| 49 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class FluxFusedSDPAProcessor:
|
| 54 |
+
"""
|
| 55 |
+
Fused QKV processor using PyTorch's scaled_dot_product_attention.
|
| 56 |
+
Uses fused projections but splits for attention computation.
|
| 57 |
+
"""
|
| 58 |
+
|
| 59 |
+
def __init__(self):
|
| 60 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 61 |
+
raise ImportError(
|
| 62 |
+
"FluxFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
def __call__(
|
| 66 |
+
self,
|
| 67 |
+
attn,
|
| 68 |
+
hidden_states: FloatTensor,
|
| 69 |
+
encoder_hidden_states: FloatTensor = None,
|
| 70 |
+
attention_mask: FloatTensor = None,
|
| 71 |
+
image_rotary_emb: Tensor = None,
|
| 72 |
+
) -> FloatTensor:
|
| 73 |
+
input_ndim = hidden_states.ndim
|
| 74 |
+
if input_ndim == 4:
|
| 75 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 76 |
+
hidden_states = hidden_states.view(
|
| 77 |
+
batch_size, channel, height * width
|
| 78 |
+
).transpose(1, 2)
|
| 79 |
+
|
| 80 |
+
context_input_ndim = (
|
| 81 |
+
encoder_hidden_states.ndim if encoder_hidden_states is not None else None
|
| 82 |
+
)
|
| 83 |
+
if context_input_ndim == 4:
|
| 84 |
+
batch_size, channel, height, width = encoder_hidden_states.shape
|
| 85 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
| 86 |
+
batch_size, channel, height * width
|
| 87 |
+
).transpose(1, 2)
|
| 88 |
+
|
| 89 |
+
batch_size = (
|
| 90 |
+
encoder_hidden_states.shape[0]
|
| 91 |
+
if encoder_hidden_states is not None
|
| 92 |
+
else hidden_states.shape[0]
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
# Single attention case (no encoder states)
|
| 96 |
+
if encoder_hidden_states is None:
|
| 97 |
+
# Use fused QKV projection
|
| 98 |
+
qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim)
|
| 99 |
+
inner_dim = qkv.shape[-1] // 3
|
| 100 |
+
head_dim = inner_dim // attn.heads
|
| 101 |
+
seq_len = hidden_states.shape[1]
|
| 102 |
+
|
| 103 |
+
# Split and reshape
|
| 104 |
+
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
|
| 105 |
+
query, key, value = qkv.unbind(
|
| 106 |
+
dim=2
|
| 107 |
+
) # Each is (batch, seq_len, heads, head_dim)
|
| 108 |
+
|
| 109 |
+
# Transpose to (batch, heads, seq_len, head_dim)
|
| 110 |
+
query = query.transpose(1, 2)
|
| 111 |
+
key = key.transpose(1, 2)
|
| 112 |
+
value = value.transpose(1, 2)
|
| 113 |
+
|
| 114 |
+
# Apply norms if needed
|
| 115 |
+
if attn.norm_q is not None:
|
| 116 |
+
query = attn.norm_q(query)
|
| 117 |
+
if attn.norm_k is not None:
|
| 118 |
+
key = attn.norm_k(key)
|
| 119 |
+
|
| 120 |
+
# Apply RoPE if needed
|
| 121 |
+
if image_rotary_emb is not None:
|
| 122 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 123 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 124 |
+
|
| 125 |
+
# SDPA
|
| 126 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 127 |
+
query,
|
| 128 |
+
key,
|
| 129 |
+
value,
|
| 130 |
+
attn_mask=attention_mask,
|
| 131 |
+
dropout_p=0.0,
|
| 132 |
+
is_causal=False,
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
# Reshape back
|
| 136 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 137 |
+
batch_size, -1, attn.heads * head_dim
|
| 138 |
+
)
|
| 139 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 140 |
+
|
| 141 |
+
if input_ndim == 4:
|
| 142 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 143 |
+
batch_size, channel, height, width
|
| 144 |
+
)
|
| 145 |
+
|
| 146 |
+
return hidden_states
|
| 147 |
+
|
| 148 |
+
# Joint attention case (with encoder states)
|
| 149 |
+
else:
|
| 150 |
+
# Process self-attention QKV
|
| 151 |
+
qkv = attn.to_qkv(hidden_states)
|
| 152 |
+
inner_dim = qkv.shape[-1] // 3
|
| 153 |
+
head_dim = inner_dim // attn.heads
|
| 154 |
+
seq_len = hidden_states.shape[1]
|
| 155 |
+
|
| 156 |
+
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
|
| 157 |
+
query, key, value = qkv.unbind(dim=2)
|
| 158 |
+
|
| 159 |
+
# Transpose to (batch, heads, seq_len, head_dim)
|
| 160 |
+
query = query.transpose(1, 2)
|
| 161 |
+
key = key.transpose(1, 2)
|
| 162 |
+
value = value.transpose(1, 2)
|
| 163 |
+
|
| 164 |
+
# Apply norms if needed
|
| 165 |
+
if attn.norm_q is not None:
|
| 166 |
+
query = attn.norm_q(query)
|
| 167 |
+
if attn.norm_k is not None:
|
| 168 |
+
key = attn.norm_k(key)
|
| 169 |
+
|
| 170 |
+
# Process encoder QKV
|
| 171 |
+
encoder_seq_len = encoder_hidden_states.shape[1]
|
| 172 |
+
encoder_qkv = attn.to_added_qkv(encoder_hidden_states)
|
| 173 |
+
encoder_qkv = encoder_qkv.view(
|
| 174 |
+
batch_size, encoder_seq_len, 3, attn.heads, head_dim
|
| 175 |
+
)
|
| 176 |
+
encoder_query, encoder_key, encoder_value = encoder_qkv.unbind(dim=2)
|
| 177 |
+
|
| 178 |
+
# Transpose to (batch, heads, seq_len, head_dim)
|
| 179 |
+
encoder_query = encoder_query.transpose(1, 2)
|
| 180 |
+
encoder_key = encoder_key.transpose(1, 2)
|
| 181 |
+
encoder_value = encoder_value.transpose(1, 2)
|
| 182 |
+
|
| 183 |
+
# Apply encoder norms if needed
|
| 184 |
+
if attn.norm_added_q is not None:
|
| 185 |
+
encoder_query = attn.norm_added_q(encoder_query)
|
| 186 |
+
if attn.norm_added_k is not None:
|
| 187 |
+
encoder_key = attn.norm_added_k(encoder_key)
|
| 188 |
+
|
| 189 |
+
# Concatenate encoder and self-attention
|
| 190 |
+
query = torch.cat([encoder_query, query], dim=2)
|
| 191 |
+
key = torch.cat([encoder_key, key], dim=2)
|
| 192 |
+
value = torch.cat([encoder_value, value], dim=2)
|
| 193 |
+
|
| 194 |
+
# Apply RoPE if needed
|
| 195 |
+
if image_rotary_emb is not None:
|
| 196 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 197 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 198 |
+
|
| 199 |
+
# SDPA
|
| 200 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 201 |
+
query,
|
| 202 |
+
key,
|
| 203 |
+
value,
|
| 204 |
+
attn_mask=attention_mask,
|
| 205 |
+
dropout_p=0.0,
|
| 206 |
+
is_causal=False,
|
| 207 |
+
)
|
| 208 |
+
|
| 209 |
+
# Reshape: (batch, heads, seq_len, head_dim) -> (batch, seq_len, heads * head_dim)
|
| 210 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 211 |
+
batch_size, -1, attn.heads * head_dim
|
| 212 |
+
)
|
| 213 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 214 |
+
|
| 215 |
+
# Split encoder and self outputs
|
| 216 |
+
encoder_hidden_states = hidden_states[:, :encoder_seq_len]
|
| 217 |
+
hidden_states = hidden_states[:, encoder_seq_len:]
|
| 218 |
+
|
| 219 |
+
# Output projections
|
| 220 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 221 |
+
hidden_states = attn.to_out[1](hidden_states) # dropout
|
| 222 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 223 |
+
|
| 224 |
+
# Reshape if needed
|
| 225 |
+
if input_ndim == 4:
|
| 226 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 227 |
+
batch_size, channel, height, width
|
| 228 |
+
)
|
| 229 |
+
if context_input_ndim == 4:
|
| 230 |
+
encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape(
|
| 231 |
+
batch_size, channel, height, width
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
return hidden_states, encoder_hidden_states
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class FluxSingleFusedSDPAProcessor:
|
| 238 |
+
"""
|
| 239 |
+
Fused QKV processor for single attention (no encoder states).
|
| 240 |
+
Simpler version for self-attention only blocks.
|
| 241 |
+
"""
|
| 242 |
+
|
| 243 |
+
def __init__(self):
|
| 244 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 245 |
+
raise ImportError(
|
| 246 |
+
"FluxSingleFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention"
|
| 247 |
+
)
|
| 248 |
+
|
| 249 |
+
def __call__(
|
| 250 |
+
self,
|
| 251 |
+
attn,
|
| 252 |
+
hidden_states: Tensor,
|
| 253 |
+
encoder_hidden_states: Tensor = None,
|
| 254 |
+
attention_mask: FloatTensor = None,
|
| 255 |
+
image_rotary_emb: Tensor = None,
|
| 256 |
+
) -> Tensor:
|
| 257 |
+
input_ndim = hidden_states.ndim
|
| 258 |
+
if input_ndim == 4:
|
| 259 |
+
batch_size, channel, height, width = hidden_states.shape
|
| 260 |
+
hidden_states = hidden_states.view(
|
| 261 |
+
batch_size, channel, height * width
|
| 262 |
+
).transpose(1, 2)
|
| 263 |
+
|
| 264 |
+
batch_size, seq_len, _ = hidden_states.shape
|
| 265 |
+
|
| 266 |
+
# Use fused QKV projection
|
| 267 |
+
qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim)
|
| 268 |
+
inner_dim = qkv.shape[-1] // 3
|
| 269 |
+
head_dim = inner_dim // attn.heads
|
| 270 |
+
|
| 271 |
+
# Split and reshape in one go
|
| 272 |
+
qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim)
|
| 273 |
+
qkv = qkv.permute(2, 0, 3, 1, 4) # (3, B, H, L, D) – still strided
|
| 274 |
+
query, key, value = [
|
| 275 |
+
t.contiguous() for t in qkv.unbind(0) # make each view dense
|
| 276 |
+
]
|
| 277 |
+
# Now each is (batch, heads, seq_len, head_dim)
|
| 278 |
+
|
| 279 |
+
# Apply norms if needed
|
| 280 |
+
if attn.norm_q is not None:
|
| 281 |
+
query = attn.norm_q(query)
|
| 282 |
+
if attn.norm_k is not None:
|
| 283 |
+
key = attn.norm_k(key)
|
| 284 |
+
|
| 285 |
+
# Apply RoPE if needed
|
| 286 |
+
if image_rotary_emb is not None:
|
| 287 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 288 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 289 |
+
|
| 290 |
+
# SDPA
|
| 291 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 292 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
| 293 |
+
)
|
| 294 |
+
|
| 295 |
+
# Reshape back
|
| 296 |
+
hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)")
|
| 297 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 298 |
+
|
| 299 |
+
if input_ndim == 4:
|
| 300 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(
|
| 301 |
+
batch_size, channel, height, width
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
return hidden_states
|
| 305 |
+
|
| 306 |
+
#################################
|
| 307 |
+
##### TRANSFORMER MERGE #########
|
| 308 |
+
#################################
|
| 309 |
+
|
| 310 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 311 |
+
|
| 312 |
+
import torch
|
| 313 |
+
import torch.nn as nn
|
| 314 |
+
import torch.nn.functional as F
|
| 315 |
+
import numpy as np
|
| 316 |
+
|
| 317 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 318 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 319 |
+
from diffusers.models.attention import FeedForward
|
| 320 |
+
from diffusers.models.attention_processor import (
|
| 321 |
+
Attention,
|
| 322 |
+
AttentionProcessor,
|
| 323 |
+
)
|
| 324 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 325 |
+
from diffusers.models.normalization import (
|
| 326 |
+
AdaLayerNormContinuous,
|
| 327 |
+
AdaLayerNormZero,
|
| 328 |
+
AdaLayerNormZeroSingle,
|
| 329 |
+
)
|
| 330 |
+
from diffusers.utils import (
|
| 331 |
+
USE_PEFT_BACKEND,
|
| 332 |
+
is_torch_version,
|
| 333 |
+
logging,
|
| 334 |
+
scale_lora_layers,
|
| 335 |
+
unscale_lora_layers,
|
| 336 |
+
)
|
| 337 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 338 |
+
from diffusers.models.embeddings import (
|
| 339 |
+
CombinedTimestepGuidanceTextProjEmbeddings,
|
| 340 |
+
CombinedTimestepTextProjEmbeddings,
|
| 341 |
+
FluxPosEmbed,
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 345 |
+
from diffusers import FluxTransformer2DModel as OriginalFluxTransformer2DModel
|
| 346 |
+
|
| 347 |
+
|
| 348 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 349 |
+
|
| 350 |
+
is_flash_attn_available = False
|
| 351 |
+
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
class FluxAttnProcessor2_0:
|
| 355 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
| 356 |
+
|
| 357 |
+
def __init__(self):
|
| 358 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 359 |
+
raise ImportError(
|
| 360 |
+
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
def __call__(
|
| 364 |
+
self,
|
| 365 |
+
attn: Attention,
|
| 366 |
+
hidden_states: torch.FloatTensor,
|
| 367 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 368 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 369 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 370 |
+
) -> torch.FloatTensor:
|
| 371 |
+
batch_size, _, _ = (
|
| 372 |
+
hidden_states.shape
|
| 373 |
+
if encoder_hidden_states is None
|
| 374 |
+
else encoder_hidden_states.shape
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
# `sample` projections.
|
| 378 |
+
query = attn.to_q(hidden_states)
|
| 379 |
+
key = attn.to_k(hidden_states)
|
| 380 |
+
value = attn.to_v(hidden_states)
|
| 381 |
+
|
| 382 |
+
inner_dim = key.shape[-1]
|
| 383 |
+
head_dim = inner_dim // attn.heads
|
| 384 |
+
|
| 385 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 386 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 387 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 388 |
+
|
| 389 |
+
if attn.norm_q is not None:
|
| 390 |
+
query = attn.norm_q(query)
|
| 391 |
+
if attn.norm_k is not None:
|
| 392 |
+
key = attn.norm_k(key)
|
| 393 |
+
|
| 394 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
| 395 |
+
if encoder_hidden_states is not None:
|
| 396 |
+
# `context` projections.
|
| 397 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
| 398 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
| 399 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
| 400 |
+
|
| 401 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
| 402 |
+
batch_size, -1, attn.heads, head_dim
|
| 403 |
+
).transpose(1, 2)
|
| 404 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
| 405 |
+
batch_size, -1, attn.heads, head_dim
|
| 406 |
+
).transpose(1, 2)
|
| 407 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
| 408 |
+
batch_size, -1, attn.heads, head_dim
|
| 409 |
+
).transpose(1, 2)
|
| 410 |
+
|
| 411 |
+
if attn.norm_added_q is not None:
|
| 412 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
| 413 |
+
encoder_hidden_states_query_proj
|
| 414 |
+
)
|
| 415 |
+
if attn.norm_added_k is not None:
|
| 416 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
| 417 |
+
encoder_hidden_states_key_proj
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
# attention
|
| 421 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
| 422 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
| 423 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
| 424 |
+
|
| 425 |
+
if image_rotary_emb is not None:
|
| 426 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 427 |
+
|
| 428 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 429 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 430 |
+
|
| 431 |
+
if attention_mask is not None:
|
| 432 |
+
#print ('Attention Used')
|
| 433 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
| 434 |
+
attention_mask = (attention_mask > 0).bool()
|
| 435 |
+
# Edit 17 - match attn dtype to query d-type
|
| 436 |
+
attention_mask = attention_mask.to(
|
| 437 |
+
device=hidden_states.device, dtype=query.dtype
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 441 |
+
query,
|
| 442 |
+
key,
|
| 443 |
+
value,
|
| 444 |
+
dropout_p=0.0,
|
| 445 |
+
is_causal=False,
|
| 446 |
+
attn_mask=attention_mask,
|
| 447 |
+
)
|
| 448 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 449 |
+
batch_size, -1, attn.heads * head_dim
|
| 450 |
+
)
|
| 451 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 452 |
+
|
| 453 |
+
if encoder_hidden_states is not None:
|
| 454 |
+
encoder_hidden_states, hidden_states = (
|
| 455 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
| 456 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
| 457 |
+
)
|
| 458 |
+
|
| 459 |
+
# linear proj
|
| 460 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 461 |
+
# dropout
|
| 462 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 463 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 464 |
+
|
| 465 |
+
return hidden_states, encoder_hidden_states
|
| 466 |
+
return hidden_states
|
| 467 |
+
|
| 468 |
+
|
| 469 |
+
def expand_flux_attention_mask(
|
| 470 |
+
hidden_states: torch.Tensor,
|
| 471 |
+
attn_mask: torch.Tensor,
|
| 472 |
+
) -> torch.Tensor:
|
| 473 |
+
"""
|
| 474 |
+
Expand a mask so that the image is included.
|
| 475 |
+
"""
|
| 476 |
+
bsz = attn_mask.shape[0]
|
| 477 |
+
assert bsz == hidden_states.shape[0]
|
| 478 |
+
residual_seq_len = hidden_states.shape[1]
|
| 479 |
+
mask_seq_len = attn_mask.shape[1]
|
| 480 |
+
|
| 481 |
+
expanded_mask = torch.ones(bsz, residual_seq_len)
|
| 482 |
+
expanded_mask[:, :mask_seq_len] = attn_mask
|
| 483 |
+
|
| 484 |
+
return expanded_mask
|
| 485 |
+
|
| 486 |
+
|
| 487 |
+
@maybe_allow_in_graph
|
| 488 |
+
class FluxSingleTransformerBlock(nn.Module):
|
| 489 |
+
r"""
|
| 490 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
| 491 |
+
|
| 492 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 493 |
+
|
| 494 |
+
Parameters:
|
| 495 |
+
dim (`int`): The number of channels in the input and output.
|
| 496 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 497 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 498 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
| 499 |
+
processing of `context` conditions.
|
| 500 |
+
"""
|
| 501 |
+
|
| 502 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
| 503 |
+
super().__init__()
|
| 504 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
| 505 |
+
|
| 506 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
| 507 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
| 508 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
| 509 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
| 510 |
+
|
| 511 |
+
processor = FluxAttnProcessor2_0()
|
| 512 |
+
self.attn = Attention(
|
| 513 |
+
query_dim=dim,
|
| 514 |
+
cross_attention_dim=None,
|
| 515 |
+
dim_head=attention_head_dim,
|
| 516 |
+
heads=num_attention_heads,
|
| 517 |
+
out_dim=dim,
|
| 518 |
+
bias=True,
|
| 519 |
+
processor=processor,
|
| 520 |
+
qk_norm="rms_norm",
|
| 521 |
+
eps=1e-6,
|
| 522 |
+
pre_only=True,
|
| 523 |
+
)
|
| 524 |
+
|
| 525 |
+
def forward(
|
| 526 |
+
self,
|
| 527 |
+
hidden_states: torch.FloatTensor,
|
| 528 |
+
temb: torch.FloatTensor,
|
| 529 |
+
image_rotary_emb=None,
|
| 530 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 531 |
+
):
|
| 532 |
+
residual = hidden_states
|
| 533 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
| 534 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
| 535 |
+
|
| 536 |
+
if attention_mask is not None:
|
| 537 |
+
attention_mask = expand_flux_attention_mask(
|
| 538 |
+
hidden_states,
|
| 539 |
+
attention_mask,
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
attn_output = self.attn(
|
| 543 |
+
hidden_states=norm_hidden_states,
|
| 544 |
+
image_rotary_emb=image_rotary_emb,
|
| 545 |
+
attention_mask=attention_mask,
|
| 546 |
+
)
|
| 547 |
+
|
| 548 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
| 549 |
+
gate = gate.unsqueeze(1)
|
| 550 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
| 551 |
+
hidden_states = residual + hidden_states
|
| 552 |
+
|
| 553 |
+
if hidden_states.dtype == torch.float16:
|
| 554 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
| 555 |
+
|
| 556 |
+
return hidden_states
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
@maybe_allow_in_graph
|
| 560 |
+
class FluxTransformerBlock(nn.Module):
|
| 561 |
+
r"""
|
| 562 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
| 563 |
+
|
| 564 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 565 |
+
|
| 566 |
+
Parameters:
|
| 567 |
+
dim (`int`): The number of channels in the input and output.
|
| 568 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 569 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 570 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
| 571 |
+
processing of `context` conditions.
|
| 572 |
+
"""
|
| 573 |
+
|
| 574 |
+
def __init__(
|
| 575 |
+
self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
|
| 576 |
+
):
|
| 577 |
+
super().__init__()
|
| 578 |
+
|
| 579 |
+
self.norm1 = AdaLayerNormZero(dim)
|
| 580 |
+
|
| 581 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
| 582 |
+
|
| 583 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
| 584 |
+
processor = FluxAttnProcessor2_0()
|
| 585 |
+
else:
|
| 586 |
+
raise ValueError(
|
| 587 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
| 588 |
+
)
|
| 589 |
+
self.attn = Attention(
|
| 590 |
+
query_dim=dim,
|
| 591 |
+
cross_attention_dim=None,
|
| 592 |
+
added_kv_proj_dim=dim,
|
| 593 |
+
dim_head=attention_head_dim,
|
| 594 |
+
heads=num_attention_heads,
|
| 595 |
+
out_dim=dim,
|
| 596 |
+
context_pre_only=False,
|
| 597 |
+
bias=True,
|
| 598 |
+
processor=processor,
|
| 599 |
+
qk_norm=qk_norm,
|
| 600 |
+
eps=eps,
|
| 601 |
+
)
|
| 602 |
+
|
| 603 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 604 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 605 |
+
|
| 606 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 607 |
+
self.ff_context = FeedForward(
|
| 608 |
+
dim=dim, dim_out=dim, activation_fn="gelu-approximate"
|
| 609 |
+
)
|
| 610 |
+
|
| 611 |
+
# let chunk size default to None
|
| 612 |
+
self._chunk_size = None
|
| 613 |
+
self._chunk_dim = 0
|
| 614 |
+
|
| 615 |
+
def forward(
|
| 616 |
+
self,
|
| 617 |
+
hidden_states: torch.FloatTensor,
|
| 618 |
+
encoder_hidden_states: torch.FloatTensor,
|
| 619 |
+
temb: torch.FloatTensor,
|
| 620 |
+
image_rotary_emb=None,
|
| 621 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 622 |
+
):
|
| 623 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 624 |
+
hidden_states, emb=temb
|
| 625 |
+
)
|
| 626 |
+
|
| 627 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
|
| 628 |
+
self.norm1_context(encoder_hidden_states, emb=temb)
|
| 629 |
+
)
|
| 630 |
+
|
| 631 |
+
if attention_mask is not None:
|
| 632 |
+
attention_mask = expand_flux_attention_mask(
|
| 633 |
+
torch.cat([encoder_hidden_states, hidden_states], dim=1),
|
| 634 |
+
attention_mask,
|
| 635 |
+
)
|
| 636 |
+
|
| 637 |
+
# Attention.
|
| 638 |
+
attention_outputs = self.attn(
|
| 639 |
+
hidden_states=norm_hidden_states,
|
| 640 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 641 |
+
image_rotary_emb=image_rotary_emb,
|
| 642 |
+
attention_mask=attention_mask,
|
| 643 |
+
)
|
| 644 |
+
if len(attention_outputs) == 2:
|
| 645 |
+
attn_output, context_attn_output = attention_outputs
|
| 646 |
+
elif len(attention_outputs) == 3:
|
| 647 |
+
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
| 648 |
+
|
| 649 |
+
# Process attention outputs for the `hidden_states`.
|
| 650 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 651 |
+
hidden_states = hidden_states + attn_output
|
| 652 |
+
|
| 653 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 654 |
+
norm_hidden_states = (
|
| 655 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 656 |
+
)
|
| 657 |
+
|
| 658 |
+
ff_output = self.ff(norm_hidden_states)
|
| 659 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 660 |
+
|
| 661 |
+
hidden_states = hidden_states + ff_output
|
| 662 |
+
if len(attention_outputs) == 3:
|
| 663 |
+
hidden_states = hidden_states + ip_attn_output
|
| 664 |
+
|
| 665 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
| 666 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
| 667 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
| 668 |
+
|
| 669 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 670 |
+
norm_encoder_hidden_states = (
|
| 671 |
+
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
|
| 672 |
+
+ c_shift_mlp[:, None]
|
| 673 |
+
)
|
| 674 |
+
|
| 675 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 676 |
+
encoder_hidden_states = (
|
| 677 |
+
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
if encoder_hidden_states.dtype == torch.float16:
|
| 681 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
| 682 |
+
|
| 683 |
+
return encoder_hidden_states, hidden_states
|
| 684 |
+
|
| 685 |
+
|
| 686 |
+
class LibreFluxTransformer2DModel(
|
| 687 |
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
| 688 |
+
):
|
| 689 |
+
"""
|
| 690 |
+
The Transformer model introduced in Flux.
|
| 691 |
+
|
| 692 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 693 |
+
|
| 694 |
+
Parameters:
|
| 695 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
| 696 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
| 697 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
| 698 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
| 699 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 700 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
| 701 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 702 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
| 703 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
| 704 |
+
"""
|
| 705 |
+
|
| 706 |
+
_supports_gradient_checkpointing = True
|
| 707 |
+
|
| 708 |
+
@register_to_config
|
| 709 |
+
def __init__(
|
| 710 |
+
self,
|
| 711 |
+
patch_size: int = 1,
|
| 712 |
+
in_channels: int = 64,
|
| 713 |
+
num_layers: int = 19,
|
| 714 |
+
num_single_layers: int = 38,
|
| 715 |
+
attention_head_dim: int = 128,
|
| 716 |
+
num_attention_heads: int = 24,
|
| 717 |
+
joint_attention_dim: int = 4096,
|
| 718 |
+
pooled_projection_dim: int = 768,
|
| 719 |
+
guidance_embeds: bool = False,
|
| 720 |
+
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
| 721 |
+
):
|
| 722 |
+
super().__init__()
|
| 723 |
+
self.out_channels = in_channels
|
| 724 |
+
self.inner_dim = (
|
| 725 |
+
self.config.num_attention_heads * self.config.attention_head_dim
|
| 726 |
+
)
|
| 727 |
+
|
| 728 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
| 729 |
+
text_time_guidance_cls = (
|
| 730 |
+
CombinedTimestepGuidanceTextProjEmbeddings ### 3 input forward (timestep, guidance, pooled_projection)
|
| 731 |
+
if guidance_embeds
|
| 732 |
+
else CombinedTimestepTextProjEmbeddings #### 2 input forward (timestep, pooled_projection)
|
| 733 |
+
)
|
| 734 |
+
self.time_text_embed = text_time_guidance_cls(
|
| 735 |
+
embedding_dim=self.inner_dim,
|
| 736 |
+
pooled_projection_dim=self.config.pooled_projection_dim,
|
| 737 |
+
)
|
| 738 |
+
|
| 739 |
+
self.context_embedder = nn.Linear(
|
| 740 |
+
self.config.joint_attention_dim, self.inner_dim
|
| 741 |
+
)
|
| 742 |
+
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
| 743 |
+
|
| 744 |
+
self.transformer_blocks = nn.ModuleList(
|
| 745 |
+
[
|
| 746 |
+
FluxTransformerBlock(
|
| 747 |
+
dim=self.inner_dim,
|
| 748 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 749 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 750 |
+
)
|
| 751 |
+
for i in range(self.config.num_layers)
|
| 752 |
+
]
|
| 753 |
+
)
|
| 754 |
+
|
| 755 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 756 |
+
[
|
| 757 |
+
FluxSingleTransformerBlock(
|
| 758 |
+
dim=self.inner_dim,
|
| 759 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 760 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 761 |
+
)
|
| 762 |
+
for i in range(self.config.num_single_layers)
|
| 763 |
+
]
|
| 764 |
+
)
|
| 765 |
+
|
| 766 |
+
self.norm_out = AdaLayerNormContinuous(
|
| 767 |
+
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
| 768 |
+
)
|
| 769 |
+
self.proj_out = nn.Linear(
|
| 770 |
+
self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
|
| 771 |
+
)
|
| 772 |
+
|
| 773 |
+
self.gradient_checkpointing = False
|
| 774 |
+
# added for users to disable checkpointing every nth step
|
| 775 |
+
self.gradient_checkpointing_interval = None
|
| 776 |
+
|
| 777 |
+
def set_gradient_checkpointing_interval(self, value: int):
|
| 778 |
+
self.gradient_checkpointing_interval = value
|
| 779 |
+
|
| 780 |
+
@property
|
| 781 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 782 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 783 |
+
r"""
|
| 784 |
+
Returns:
|
| 785 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 786 |
+
indexed by its weight name.
|
| 787 |
+
"""
|
| 788 |
+
# set recursively
|
| 789 |
+
processors = {}
|
| 790 |
+
|
| 791 |
+
def fn_recursive_add_processors(
|
| 792 |
+
name: str,
|
| 793 |
+
module: torch.nn.Module,
|
| 794 |
+
processors: Dict[str, AttentionProcessor],
|
| 795 |
+
):
|
| 796 |
+
if hasattr(module, "get_processor"):
|
| 797 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 798 |
+
|
| 799 |
+
for sub_name, child in module.named_children():
|
| 800 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 801 |
+
|
| 802 |
+
return processors
|
| 803 |
+
|
| 804 |
+
for name, module in self.named_children():
|
| 805 |
+
fn_recursive_add_processors(name, module, processors)
|
| 806 |
+
|
| 807 |
+
return processors
|
| 808 |
+
|
| 809 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 810 |
+
def set_attn_processor(
|
| 811 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
| 812 |
+
):
|
| 813 |
+
r"""
|
| 814 |
+
Sets the attention processor to use to compute attention.
|
| 815 |
+
|
| 816 |
+
Parameters:
|
| 817 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 818 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 819 |
+
for **all** `Attention` layers.
|
| 820 |
+
|
| 821 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 822 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 823 |
+
|
| 824 |
+
"""
|
| 825 |
+
count = len(self.attn_processors.keys())
|
| 826 |
+
|
| 827 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 828 |
+
raise ValueError(
|
| 829 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 830 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 831 |
+
)
|
| 832 |
+
|
| 833 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 834 |
+
if hasattr(module, "set_processor"):
|
| 835 |
+
if not isinstance(processor, dict):
|
| 836 |
+
module.set_processor(processor)
|
| 837 |
+
else:
|
| 838 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 839 |
+
|
| 840 |
+
for sub_name, child in module.named_children():
|
| 841 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 842 |
+
|
| 843 |
+
for name, module in self.named_children():
|
| 844 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 845 |
+
|
| 846 |
+
def forward(
|
| 847 |
+
self,
|
| 848 |
+
hidden_states: torch.Tensor,
|
| 849 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 850 |
+
pooled_projections: torch.Tensor = None,
|
| 851 |
+
timestep: torch.LongTensor = None,
|
| 852 |
+
img_ids: torch.Tensor = None,
|
| 853 |
+
txt_ids: torch.Tensor = None,
|
| 854 |
+
guidance: torch.Tensor = None,
|
| 855 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 856 |
+
controlnet_block_samples=None,
|
| 857 |
+
controlnet_single_block_samples=None,
|
| 858 |
+
return_dict: bool = True,
|
| 859 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 860 |
+
controlnet_blocks_repeat: bool = False,
|
| 861 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 862 |
+
"""
|
| 863 |
+
The [`FluxTransformer2DModel`] forward method.
|
| 864 |
+
|
| 865 |
+
Args:
|
| 866 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 867 |
+
Input `hidden_states`.
|
| 868 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 869 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 870 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 871 |
+
from the embeddings of input conditions.
|
| 872 |
+
timestep ( `torch.LongTensor`):
|
| 873 |
+
Used to indicate denoising step.
|
| 874 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 875 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 876 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 877 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 878 |
+
`self.processor` in
|
| 879 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 880 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 881 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 882 |
+
tuple.
|
| 883 |
+
|
| 884 |
+
Returns:
|
| 885 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 886 |
+
`tuple` where the first element is the sample tensor.
|
| 887 |
+
"""
|
| 888 |
+
if joint_attention_kwargs is not None:
|
| 889 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 890 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 891 |
+
else:
|
| 892 |
+
lora_scale = 1.0
|
| 893 |
+
|
| 894 |
+
if USE_PEFT_BACKEND:
|
| 895 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 896 |
+
scale_lora_layers(self, lora_scale)
|
| 897 |
+
else:
|
| 898 |
+
if (
|
| 899 |
+
joint_attention_kwargs is not None
|
| 900 |
+
and joint_attention_kwargs.get("scale", None) is not None
|
| 901 |
+
):
|
| 902 |
+
logger.warning(
|
| 903 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 904 |
+
)
|
| 905 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 906 |
+
|
| 907 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 908 |
+
if guidance is not None:
|
| 909 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 910 |
+
else:
|
| 911 |
+
guidance = None
|
| 912 |
+
|
| 913 |
+
#print( self.time_text_embed)
|
| 914 |
+
temb = (
|
| 915 |
+
self.time_text_embed(timestep,pooled_projections)
|
| 916 |
+
# Edit 1 # Charlie NOT NEEDED - UNDONE
|
| 917 |
+
if guidance is None
|
| 918 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
| 919 |
+
)
|
| 920 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 921 |
+
|
| 922 |
+
if txt_ids.ndim == 3:
|
| 923 |
+
txt_ids = txt_ids[0]
|
| 924 |
+
if img_ids.ndim == 3:
|
| 925 |
+
img_ids = img_ids[0]
|
| 926 |
+
|
| 927 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
| 928 |
+
|
| 929 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 930 |
+
|
| 931 |
+
# IP adapter
|
| 932 |
+
if (
|
| 933 |
+
joint_attention_kwargs is not None
|
| 934 |
+
and "ip_adapter_image_embeds" in joint_attention_kwargs
|
| 935 |
+
):
|
| 936 |
+
ip_adapter_image_embeds = joint_attention_kwargs.pop(
|
| 937 |
+
"ip_adapter_image_embeds"
|
| 938 |
+
)
|
| 939 |
+
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
| 940 |
+
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
| 941 |
+
|
| 942 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 943 |
+
if (
|
| 944 |
+
self.training
|
| 945 |
+
and self.gradient_checkpointing
|
| 946 |
+
and (
|
| 947 |
+
self.gradient_checkpointing_interval is None
|
| 948 |
+
or index_block % self.gradient_checkpointing_interval == 0
|
| 949 |
+
)
|
| 950 |
+
):
|
| 951 |
+
|
| 952 |
+
def create_custom_forward(module, return_dict=None):
|
| 953 |
+
def custom_forward(*inputs):
|
| 954 |
+
if return_dict is not None:
|
| 955 |
+
return module(*inputs, return_dict=return_dict)
|
| 956 |
+
else:
|
| 957 |
+
return module(*inputs)
|
| 958 |
+
|
| 959 |
+
return custom_forward
|
| 960 |
+
|
| 961 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 962 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 963 |
+
)
|
| 964 |
+
encoder_hidden_states, hidden_states = (
|
| 965 |
+
torch.utils.checkpoint.checkpoint(
|
| 966 |
+
create_custom_forward(block),
|
| 967 |
+
hidden_states,
|
| 968 |
+
encoder_hidden_states,
|
| 969 |
+
temb,
|
| 970 |
+
image_rotary_emb,
|
| 971 |
+
attention_mask,
|
| 972 |
+
**ckpt_kwargs,
|
| 973 |
+
)
|
| 974 |
+
)
|
| 975 |
+
|
| 976 |
+
else:
|
| 977 |
+
encoder_hidden_states, hidden_states = block(
|
| 978 |
+
hidden_states=hidden_states,
|
| 979 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 980 |
+
temb=temb,
|
| 981 |
+
image_rotary_emb=image_rotary_emb,
|
| 982 |
+
attention_mask=attention_mask,
|
| 983 |
+
)
|
| 984 |
+
|
| 985 |
+
# controlnet residual
|
| 986 |
+
if controlnet_block_samples is not None:
|
| 987 |
+
interval_control = len(self.transformer_blocks) / len(
|
| 988 |
+
controlnet_block_samples
|
| 989 |
+
)
|
| 990 |
+
interval_control = int(np.ceil(interval_control))
|
| 991 |
+
# For Xlabs ControlNet.
|
| 992 |
+
if controlnet_blocks_repeat:
|
| 993 |
+
hidden_states = (
|
| 994 |
+
hidden_states
|
| 995 |
+
+ controlnet_block_samples[
|
| 996 |
+
index_block % len(controlnet_block_samples)
|
| 997 |
+
]
|
| 998 |
+
)
|
| 999 |
+
else:
|
| 1000 |
+
hidden_states = (
|
| 1001 |
+
hidden_states
|
| 1002 |
+
+ controlnet_block_samples[index_block // interval_control]
|
| 1003 |
+
)
|
| 1004 |
+
|
| 1005 |
+
# Flux places the text tokens in front of the image tokens in the
|
| 1006 |
+
# sequence.
|
| 1007 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 1008 |
+
|
| 1009 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 1010 |
+
if (
|
| 1011 |
+
self.training
|
| 1012 |
+
and self.gradient_checkpointing
|
| 1013 |
+
or (
|
| 1014 |
+
self.gradient_checkpointing_interval is not None
|
| 1015 |
+
and index_block % self.gradient_checkpointing_interval == 0
|
| 1016 |
+
)
|
| 1017 |
+
):
|
| 1018 |
+
|
| 1019 |
+
def create_custom_forward(module, return_dict=None):
|
| 1020 |
+
def custom_forward(*inputs):
|
| 1021 |
+
if return_dict is not None:
|
| 1022 |
+
return module(*inputs, return_dict=return_dict)
|
| 1023 |
+
else:
|
| 1024 |
+
return module(*inputs)
|
| 1025 |
+
|
| 1026 |
+
return custom_forward
|
| 1027 |
+
|
| 1028 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 1029 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 1030 |
+
)
|
| 1031 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1032 |
+
create_custom_forward(block),
|
| 1033 |
+
hidden_states,
|
| 1034 |
+
temb,
|
| 1035 |
+
image_rotary_emb,
|
| 1036 |
+
attention_mask,
|
| 1037 |
+
**ckpt_kwargs,
|
| 1038 |
+
)
|
| 1039 |
+
|
| 1040 |
+
else:
|
| 1041 |
+
hidden_states = block(
|
| 1042 |
+
hidden_states=hidden_states,
|
| 1043 |
+
temb=temb,
|
| 1044 |
+
image_rotary_emb=image_rotary_emb,
|
| 1045 |
+
attention_mask=attention_mask,
|
| 1046 |
+
)
|
| 1047 |
+
|
| 1048 |
+
# controlnet residual
|
| 1049 |
+
if controlnet_single_block_samples is not None:
|
| 1050 |
+
interval_control = len(self.single_transformer_blocks) / len(
|
| 1051 |
+
controlnet_single_block_samples
|
| 1052 |
+
)
|
| 1053 |
+
interval_control = int(np.ceil(interval_control))
|
| 1054 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
| 1055 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 1056 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
| 1057 |
+
)
|
| 1058 |
+
|
| 1059 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 1060 |
+
|
| 1061 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 1062 |
+
output = self.proj_out(hidden_states)
|
| 1063 |
+
|
| 1064 |
+
if USE_PEFT_BACKEND:
|
| 1065 |
+
# remove `lora_scale` from each PEFT layer
|
| 1066 |
+
unscale_lora_layers(self, lora_scale)
|
| 1067 |
+
|
| 1068 |
+
if not return_dict:
|
| 1069 |
+
return (output,)
|
| 1070 |
+
|
| 1071 |
+
return Transformer2DModelOutput(sample=output)
|
| 1072 |
+
|
| 1073 |
+
####################################
|
| 1074 |
+
##### CONTROL NET MODEL MERGE ######
|
| 1075 |
+
####################################
|
| 1076 |
+
|
| 1077 |
+
|
| 1078 |
+
from dataclasses import dataclass
|
| 1079 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 1080 |
+
|
| 1081 |
+
import torch
|
| 1082 |
+
import torch.nn as nn
|
| 1083 |
+
|
| 1084 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 1085 |
+
from diffusers.loaders import PeftAdapterMixin
|
| 1086 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
| 1087 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 1088 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
| 1089 |
+
from diffusers.models.controlnets.controlnet import ControlNetConditioningEmbedding, zero_module
|
| 1090 |
+
from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed
|
| 1091 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 1092 |
+
|
| 1093 |
+
|
| 1094 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 1095 |
+
|
| 1096 |
+
|
| 1097 |
+
@dataclass
|
| 1098 |
+
class FluxControlNetOutput(BaseOutput):
|
| 1099 |
+
controlnet_block_samples: Tuple[torch.Tensor]
|
| 1100 |
+
controlnet_single_block_samples: Tuple[torch.Tensor]
|
| 1101 |
+
|
| 1102 |
+
|
| 1103 |
+
class LibreFluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
|
| 1104 |
+
_supports_gradient_checkpointing = True
|
| 1105 |
+
|
| 1106 |
+
@register_to_config
|
| 1107 |
+
def __init__(
|
| 1108 |
+
self,
|
| 1109 |
+
patch_size: int = 1,
|
| 1110 |
+
in_channels: int = 64,
|
| 1111 |
+
num_layers: int = 19,
|
| 1112 |
+
num_single_layers: int = 38,
|
| 1113 |
+
attention_head_dim: int = 128,
|
| 1114 |
+
num_attention_heads: int = 24,
|
| 1115 |
+
joint_attention_dim: int = 4096,
|
| 1116 |
+
pooled_projection_dim: int = 768,
|
| 1117 |
+
guidance_embeds: bool = False,
|
| 1118 |
+
axes_dims_rope: List[int] = [16, 56, 56],
|
| 1119 |
+
num_mode: int = None,
|
| 1120 |
+
conditioning_embedding_channels: int = None,
|
| 1121 |
+
):
|
| 1122 |
+
super().__init__()
|
| 1123 |
+
self.out_channels = in_channels
|
| 1124 |
+
self.inner_dim = num_attention_heads * attention_head_dim
|
| 1125 |
+
|
| 1126 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
| 1127 |
+
|
| 1128 |
+
# edit 19
|
| 1129 |
+
#text_time_guidance_cls = (
|
| 1130 |
+
# CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings
|
| 1131 |
+
#)
|
| 1132 |
+
|
| 1133 |
+
text_time_guidance_cls = CombinedTimestepGuidanceTextProjEmbeddings
|
| 1134 |
+
text_time_cls = CombinedTimestepTextProjEmbeddings
|
| 1135 |
+
|
| 1136 |
+
self.time_text_embed = text_time_cls(
|
| 1137 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
| 1138 |
+
)
|
| 1139 |
+
self.time_text_guidance_embed = text_time_guidance_cls(
|
| 1140 |
+
embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim
|
| 1141 |
+
)
|
| 1142 |
+
|
| 1143 |
+
self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim)
|
| 1144 |
+
self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
|
| 1145 |
+
|
| 1146 |
+
self.transformer_blocks = nn.ModuleList(
|
| 1147 |
+
[
|
| 1148 |
+
FluxTransformerBlock(
|
| 1149 |
+
dim=self.inner_dim,
|
| 1150 |
+
num_attention_heads=num_attention_heads,
|
| 1151 |
+
attention_head_dim=attention_head_dim,
|
| 1152 |
+
)
|
| 1153 |
+
for i in range(num_layers)
|
| 1154 |
+
]
|
| 1155 |
+
)
|
| 1156 |
+
|
| 1157 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 1158 |
+
[
|
| 1159 |
+
FluxSingleTransformerBlock(
|
| 1160 |
+
dim=self.inner_dim,
|
| 1161 |
+
num_attention_heads=num_attention_heads,
|
| 1162 |
+
attention_head_dim=attention_head_dim,
|
| 1163 |
+
)
|
| 1164 |
+
for i in range(num_single_layers)
|
| 1165 |
+
]
|
| 1166 |
+
)
|
| 1167 |
+
|
| 1168 |
+
# controlnet_blocks
|
| 1169 |
+
self.controlnet_blocks = nn.ModuleList([])
|
| 1170 |
+
for _ in range(len(self.transformer_blocks)):
|
| 1171 |
+
self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
| 1172 |
+
|
| 1173 |
+
self.controlnet_single_blocks = nn.ModuleList([])
|
| 1174 |
+
for _ in range(len(self.single_transformer_blocks)):
|
| 1175 |
+
self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim)))
|
| 1176 |
+
|
| 1177 |
+
self.union = num_mode is not None
|
| 1178 |
+
if self.union:
|
| 1179 |
+
self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim)
|
| 1180 |
+
|
| 1181 |
+
if conditioning_embedding_channels is not None:
|
| 1182 |
+
self.input_hint_block = ControlNetConditioningEmbedding(
|
| 1183 |
+
conditioning_embedding_channels=conditioning_embedding_channels, block_out_channels=(16, 16, 16, 16)
|
| 1184 |
+
)
|
| 1185 |
+
self.controlnet_x_embedder = torch.nn.Linear(in_channels, self.inner_dim)
|
| 1186 |
+
else:
|
| 1187 |
+
self.input_hint_block = None
|
| 1188 |
+
self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim))
|
| 1189 |
+
|
| 1190 |
+
self.gradient_checkpointing = False
|
| 1191 |
+
|
| 1192 |
+
@property
|
| 1193 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 1194 |
+
def attn_processors(self):
|
| 1195 |
+
r"""
|
| 1196 |
+
Returns:
|
| 1197 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 1198 |
+
indexed by its weight name.
|
| 1199 |
+
"""
|
| 1200 |
+
# set recursively
|
| 1201 |
+
processors = {}
|
| 1202 |
+
|
| 1203 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
| 1204 |
+
if hasattr(module, "get_processor"):
|
| 1205 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 1206 |
+
|
| 1207 |
+
for sub_name, child in module.named_children():
|
| 1208 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 1209 |
+
|
| 1210 |
+
return processors
|
| 1211 |
+
|
| 1212 |
+
for name, module in self.named_children():
|
| 1213 |
+
fn_recursive_add_processors(name, module, processors)
|
| 1214 |
+
|
| 1215 |
+
return processors
|
| 1216 |
+
|
| 1217 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 1218 |
+
def set_attn_processor(self, processor):
|
| 1219 |
+
r"""
|
| 1220 |
+
Sets the attention processor to use to compute attention.
|
| 1221 |
+
|
| 1222 |
+
Parameters:
|
| 1223 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 1224 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 1225 |
+
for **all** `Attention` layers.
|
| 1226 |
+
|
| 1227 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 1228 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 1229 |
+
|
| 1230 |
+
"""
|
| 1231 |
+
count = len(self.attn_processors.keys())
|
| 1232 |
+
|
| 1233 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 1234 |
+
raise ValueError(
|
| 1235 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 1236 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 1237 |
+
)
|
| 1238 |
+
|
| 1239 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 1240 |
+
if hasattr(module, "set_processor"):
|
| 1241 |
+
if not isinstance(processor, dict):
|
| 1242 |
+
module.set_processor(processor)
|
| 1243 |
+
else:
|
| 1244 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 1245 |
+
|
| 1246 |
+
for sub_name, child in module.named_children():
|
| 1247 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 1248 |
+
|
| 1249 |
+
for name, module in self.named_children():
|
| 1250 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 1251 |
+
|
| 1252 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
| 1253 |
+
if hasattr(module, "gradient_checkpointing"):
|
| 1254 |
+
module.gradient_checkpointing = value
|
| 1255 |
+
|
| 1256 |
+
@classmethod
|
| 1257 |
+
def from_transformer(
|
| 1258 |
+
cls,
|
| 1259 |
+
transformer,
|
| 1260 |
+
num_layers: int = 4,
|
| 1261 |
+
num_single_layers: int = 10,
|
| 1262 |
+
attention_head_dim: int = 128,
|
| 1263 |
+
num_attention_heads: int = 24,
|
| 1264 |
+
load_weights_from_transformer=True,
|
| 1265 |
+
):
|
| 1266 |
+
config = dict(transformer.config)
|
| 1267 |
+
config["num_layers"] = num_layers
|
| 1268 |
+
config["num_single_layers"] = num_single_layers
|
| 1269 |
+
config["attention_head_dim"] = attention_head_dim
|
| 1270 |
+
config["num_attention_heads"] = num_attention_heads
|
| 1271 |
+
|
| 1272 |
+
controlnet = cls.from_config(config)
|
| 1273 |
+
|
| 1274 |
+
if load_weights_from_transformer:
|
| 1275 |
+
controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict())
|
| 1276 |
+
controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict())
|
| 1277 |
+
controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict())
|
| 1278 |
+
controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict())
|
| 1279 |
+
controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False)
|
| 1280 |
+
controlnet.single_transformer_blocks.load_state_dict(
|
| 1281 |
+
transformer.single_transformer_blocks.state_dict(), strict=False
|
| 1282 |
+
)
|
| 1283 |
+
|
| 1284 |
+
controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder)
|
| 1285 |
+
|
| 1286 |
+
return controlnet
|
| 1287 |
+
|
| 1288 |
+
# Edit 13 Adding attention masking to forward
|
| 1289 |
+
def forward(
|
| 1290 |
+
self,
|
| 1291 |
+
hidden_states: torch.Tensor,
|
| 1292 |
+
controlnet_cond: torch.Tensor,
|
| 1293 |
+
controlnet_mode: torch.Tensor = None,
|
| 1294 |
+
conditioning_scale: float = 1.0,
|
| 1295 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 1296 |
+
pooled_projections: torch.Tensor = None,
|
| 1297 |
+
timestep: torch.LongTensor = None,
|
| 1298 |
+
img_ids: torch.Tensor = None,
|
| 1299 |
+
txt_ids: torch.Tensor = None,
|
| 1300 |
+
guidance: torch.Tensor = None,
|
| 1301 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 1302 |
+
return_dict: bool = True,
|
| 1303 |
+
attention_mask: Optional[torch.Tensor] = None, # <-- 1. ADD ARGUMENT HERE
|
| 1304 |
+
|
| 1305 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 1306 |
+
"""
|
| 1307 |
+
The [`FluxTransformer2DModel`] forward method.
|
| 1308 |
+
|
| 1309 |
+
Args:
|
| 1310 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 1311 |
+
Input `hidden_states`.
|
| 1312 |
+
controlnet_cond (`torch.Tensor`):
|
| 1313 |
+
The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`.
|
| 1314 |
+
controlnet_mode (`torch.Tensor`):
|
| 1315 |
+
The mode tensor of shape `(batch_size, 1)`.
|
| 1316 |
+
conditioning_scale (`float`, defaults to `1.0`):
|
| 1317 |
+
The scale factor for ControlNet outputs.
|
| 1318 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 1319 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 1320 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 1321 |
+
from the embeddings of input conditions.
|
| 1322 |
+
timestep ( `torch.LongTensor`):
|
| 1323 |
+
Used to indicate denoising step.
|
| 1324 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 1325 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 1326 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 1327 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 1328 |
+
`self.processor` in
|
| 1329 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 1330 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 1331 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 1332 |
+
tuple.
|
| 1333 |
+
|
| 1334 |
+
Returns:
|
| 1335 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 1336 |
+
`tuple` where the first element is the sample tensor.
|
| 1337 |
+
"""
|
| 1338 |
+
if joint_attention_kwargs is not None:
|
| 1339 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 1340 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 1341 |
+
else:
|
| 1342 |
+
lora_scale = 1.0
|
| 1343 |
+
|
| 1344 |
+
if USE_PEFT_BACKEND:
|
| 1345 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 1346 |
+
scale_lora_layers(self, lora_scale)
|
| 1347 |
+
else:
|
| 1348 |
+
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
| 1349 |
+
logger.warning(
|
| 1350 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 1351 |
+
)
|
| 1352 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 1353 |
+
|
| 1354 |
+
if self.input_hint_block is not None:
|
| 1355 |
+
controlnet_cond = self.input_hint_block(controlnet_cond)
|
| 1356 |
+
batch_size, channels, height_pw, width_pw = controlnet_cond.shape
|
| 1357 |
+
height = height_pw // self.config.patch_size
|
| 1358 |
+
width = width_pw // self.config.patch_size
|
| 1359 |
+
controlnet_cond = controlnet_cond.reshape(
|
| 1360 |
+
batch_size, channels, height, self.config.patch_size, width, self.config.patch_size
|
| 1361 |
+
)
|
| 1362 |
+
controlnet_cond = controlnet_cond.permute(0, 2, 4, 1, 3, 5)
|
| 1363 |
+
controlnet_cond = controlnet_cond.reshape(batch_size, height * width, -1)
|
| 1364 |
+
# add
|
| 1365 |
+
hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond)
|
| 1366 |
+
|
| 1367 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 1368 |
+
if guidance is not None:
|
| 1369 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 1370 |
+
else:
|
| 1371 |
+
guidance = None
|
| 1372 |
+
|
| 1373 |
+
#print ('Guidance:', guidance)
|
| 1374 |
+
temb = (
|
| 1375 |
+
self.time_text_embed(timestep, pooled_projections)
|
| 1376 |
+
if guidance is None
|
| 1377 |
+
# edit 19
|
| 1378 |
+
else self.time_text_guidance_embed(timestep, guidance, pooled_projections)
|
| 1379 |
+
)
|
| 1380 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 1381 |
+
|
| 1382 |
+
if self.union:
|
| 1383 |
+
# union mode
|
| 1384 |
+
if controlnet_mode is None:
|
| 1385 |
+
raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union")
|
| 1386 |
+
# union mode emb
|
| 1387 |
+
controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode)
|
| 1388 |
+
encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1)
|
| 1389 |
+
txt_ids = torch.cat([txt_ids[:1], txt_ids], dim=0)
|
| 1390 |
+
|
| 1391 |
+
if txt_ids.ndim == 3:
|
| 1392 |
+
logger.warning(
|
| 1393 |
+
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
| 1394 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 1395 |
+
)
|
| 1396 |
+
txt_ids = txt_ids[0]
|
| 1397 |
+
if img_ids.ndim == 3:
|
| 1398 |
+
logger.warning(
|
| 1399 |
+
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
| 1400 |
+
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
| 1401 |
+
)
|
| 1402 |
+
img_ids = img_ids[0]
|
| 1403 |
+
|
| 1404 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
| 1405 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 1406 |
+
|
| 1407 |
+
block_samples = ()
|
| 1408 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 1409 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 1410 |
+
|
| 1411 |
+
def create_custom_forward(module, return_dict=None):
|
| 1412 |
+
def custom_forward(*inputs):
|
| 1413 |
+
if return_dict is not None:
|
| 1414 |
+
return module(*inputs, return_dict=return_dict)
|
| 1415 |
+
else:
|
| 1416 |
+
return module(*inputs)
|
| 1417 |
+
|
| 1418 |
+
return custom_forward
|
| 1419 |
+
|
| 1420 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 1421 |
+
encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1422 |
+
create_custom_forward(block),
|
| 1423 |
+
hidden_states,
|
| 1424 |
+
encoder_hidden_states,
|
| 1425 |
+
temb,
|
| 1426 |
+
image_rotary_emb,
|
| 1427 |
+
attention_mask, # Edit 13
|
| 1428 |
+
**ckpt_kwargs,
|
| 1429 |
+
)
|
| 1430 |
+
|
| 1431 |
+
else:
|
| 1432 |
+
encoder_hidden_states, hidden_states = block(
|
| 1433 |
+
hidden_states=hidden_states,
|
| 1434 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 1435 |
+
temb=temb,
|
| 1436 |
+
image_rotary_emb=image_rotary_emb,
|
| 1437 |
+
attention_mask=attention_mask, # Edit 13
|
| 1438 |
+
|
| 1439 |
+
)
|
| 1440 |
+
block_samples = block_samples + (hidden_states,)
|
| 1441 |
+
|
| 1442 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 1443 |
+
|
| 1444 |
+
single_block_samples = ()
|
| 1445 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 1446 |
+
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
| 1447 |
+
|
| 1448 |
+
def create_custom_forward(module, return_dict=None):
|
| 1449 |
+
def custom_forward(*inputs):
|
| 1450 |
+
if return_dict is not None:
|
| 1451 |
+
return module(*inputs, return_dict=return_dict)
|
| 1452 |
+
else:
|
| 1453 |
+
return module(*inputs)
|
| 1454 |
+
|
| 1455 |
+
return custom_forward
|
| 1456 |
+
|
| 1457 |
+
ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 1458 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 1459 |
+
create_custom_forward(block),
|
| 1460 |
+
hidden_states,
|
| 1461 |
+
temb,
|
| 1462 |
+
image_rotary_emb,
|
| 1463 |
+
attention_mask, # <-- 2. PASS MASK TO GRADIENT CHECKPOINTING # Edit 13
|
| 1464 |
+
**ckpt_kwargs,
|
| 1465 |
+
)
|
| 1466 |
+
|
| 1467 |
+
else:
|
| 1468 |
+
hidden_states = block(
|
| 1469 |
+
hidden_states=hidden_states,
|
| 1470 |
+
temb=temb,
|
| 1471 |
+
image_rotary_emb=image_rotary_emb,
|
| 1472 |
+
attention_mask=attention_mask, # <-- 2. PASS MASK TO BLOCK Edit 13
|
| 1473 |
+
|
| 1474 |
+
)
|
| 1475 |
+
single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],)
|
| 1476 |
+
|
| 1477 |
+
# controlnet block
|
| 1478 |
+
controlnet_block_samples = ()
|
| 1479 |
+
for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks):
|
| 1480 |
+
block_sample = controlnet_block(block_sample)
|
| 1481 |
+
controlnet_block_samples = controlnet_block_samples + (block_sample,)
|
| 1482 |
+
|
| 1483 |
+
controlnet_single_block_samples = ()
|
| 1484 |
+
for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks):
|
| 1485 |
+
single_block_sample = controlnet_block(single_block_sample)
|
| 1486 |
+
controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,)
|
| 1487 |
+
|
| 1488 |
+
# scaling
|
| 1489 |
+
controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples]
|
| 1490 |
+
controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples]
|
| 1491 |
+
|
| 1492 |
+
controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples
|
| 1493 |
+
controlnet_single_block_samples = (
|
| 1494 |
+
None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples
|
| 1495 |
+
)
|
| 1496 |
+
|
| 1497 |
+
if USE_PEFT_BACKEND:
|
| 1498 |
+
# remove `lora_scale` from each PEFT layer
|
| 1499 |
+
unscale_lora_layers(self, lora_scale)
|
| 1500 |
+
|
| 1501 |
+
if not return_dict:
|
| 1502 |
+
return (controlnet_block_samples, controlnet_single_block_samples)
|
| 1503 |
+
|
| 1504 |
+
return FluxControlNetOutput(
|
| 1505 |
+
controlnet_block_samples=controlnet_block_samples,
|
| 1506 |
+
controlnet_single_block_samples=controlnet_single_block_samples,
|
| 1507 |
+
)
|
model_index.json
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "LibreFluxControlNetPipeline",
|
| 3 |
+
"_diffusers_version": "0.32.0",
|
| 4 |
+
"controlnet": [
|
| 5 |
+
"net",
|
| 6 |
+
"LibreFluxControlNetModel"
|
| 7 |
+
],
|
| 8 |
+
"scheduler": [
|
| 9 |
+
"diffusers",
|
| 10 |
+
"FlowMatchEulerDiscreteScheduler"
|
| 11 |
+
],
|
| 12 |
+
"text_encoder": [
|
| 13 |
+
"transformers",
|
| 14 |
+
"CLIPTextModel"
|
| 15 |
+
],
|
| 16 |
+
"text_encoder_2": [
|
| 17 |
+
"transformers",
|
| 18 |
+
"T5EncoderModel"
|
| 19 |
+
],
|
| 20 |
+
"tokenizer": [
|
| 21 |
+
"transformers",
|
| 22 |
+
"CLIPTokenizer"
|
| 23 |
+
],
|
| 24 |
+
"tokenizer_2": [
|
| 25 |
+
"transformers",
|
| 26 |
+
"T5TokenizerFast"
|
| 27 |
+
],
|
| 28 |
+
"transformer": [
|
| 29 |
+
"trans",
|
| 30 |
+
"LibreFluxTransformer2DModel"
|
| 31 |
+
],
|
| 32 |
+
"vae": [
|
| 33 |
+
"diffusers",
|
| 34 |
+
"AutoencoderKL"
|
| 35 |
+
]
|
| 36 |
+
}
|
pipeline.py
ADDED
|
@@ -0,0 +1,973 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
#
|
| 15 |
+
# This was modied from the control net repo
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
import inspect
|
| 19 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 20 |
+
|
| 21 |
+
from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel
|
| 22 |
+
|
| 23 |
+
import numpy as np
|
| 24 |
+
import torch
|
| 25 |
+
from transformers import (
|
| 26 |
+
CLIPTextModel,
|
| 27 |
+
CLIPTokenizer,
|
| 28 |
+
T5EncoderModel,
|
| 29 |
+
T5TokenizerFast,
|
| 30 |
+
)
|
| 31 |
+
|
| 32 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
| 33 |
+
from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin
|
| 34 |
+
from diffusers.models.autoencoders import AutoencoderKL
|
| 35 |
+
|
| 36 |
+
from .controlnet.net import LibreFluxControlNetModel
|
| 37 |
+
from .transformer.trans import LibreFluxTransformer2DModel
|
| 38 |
+
|
| 39 |
+
####################################
|
| 40 |
+
##### ACTUAL PIPELINE STUFF ########
|
| 41 |
+
####################################
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 45 |
+
from diffusers.utils import (
|
| 46 |
+
USE_PEFT_BACKEND,
|
| 47 |
+
is_torch_xla_available,
|
| 48 |
+
logging,
|
| 49 |
+
replace_example_docstring,
|
| 50 |
+
scale_lora_layers,
|
| 51 |
+
unscale_lora_layers,
|
| 52 |
+
)
|
| 53 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 54 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
| 55 |
+
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
if is_torch_xla_available():
|
| 59 |
+
import torch_xla.core.xla_model as xm
|
| 60 |
+
|
| 61 |
+
XLA_AVAILABLE = True
|
| 62 |
+
else:
|
| 63 |
+
XLA_AVAILABLE = False
|
| 64 |
+
|
| 65 |
+
# TODO(Chris): why won't this emit messages at the INFO level???
|
| 66 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 67 |
+
|
| 68 |
+
EXAMPLE_DOC_STRING = """
|
| 69 |
+
Examples:
|
| 70 |
+
```py
|
| 71 |
+
>>> import torch
|
| 72 |
+
>>> from diffusers.utils import load_image
|
| 73 |
+
>>> from diffusers import FluxControlNetPipeline
|
| 74 |
+
>>> from diffusers import FluxControlNetModel
|
| 75 |
+
|
| 76 |
+
>>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny"
|
| 77 |
+
>>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16)
|
| 78 |
+
>>> pipe = FluxControlNetPipeline.from_pretrained(
|
| 79 |
+
... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16
|
| 80 |
+
... )
|
| 81 |
+
>>> pipe.to("cuda")
|
| 82 |
+
>>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg")
|
| 83 |
+
>>> prompt = "A girl in city, 25 years old, cool, futuristic"
|
| 84 |
+
>>> image = pipe(
|
| 85 |
+
... prompt,
|
| 86 |
+
... control_image=control_image,
|
| 87 |
+
... controlnet_conditioning_scale=0.6,
|
| 88 |
+
... num_inference_steps=28,
|
| 89 |
+
... guidance_scale=3.5,
|
| 90 |
+
... ).images[0]
|
| 91 |
+
>>> image.save("flux.png")
|
| 92 |
+
```
|
| 93 |
+
"""
|
| 94 |
+
|
| 95 |
+
def _maybe_to(x: torch.Tensor, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None):
|
| 96 |
+
if device is None and dtype is None:
|
| 97 |
+
return x
|
| 98 |
+
need_dev = device is not None and str(getattr(x, "device", None)) != str(device)
|
| 99 |
+
need_dt = dtype is not None and getattr(x, "dtype", None) != dtype
|
| 100 |
+
return x.to(device=device if need_dev else x.device, dtype=dtype if need_dt else x.dtype) if (need_dev or need_dt) else x
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
| 104 |
+
def calculate_shift(
|
| 105 |
+
image_seq_len,
|
| 106 |
+
base_seq_len: int = 256,
|
| 107 |
+
max_seq_len: int = 4096,
|
| 108 |
+
base_shift: float = 0.5,
|
| 109 |
+
max_shift: float = 1.16,
|
| 110 |
+
):
|
| 111 |
+
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
| 112 |
+
b = base_shift - m * base_seq_len
|
| 113 |
+
mu = image_seq_len * m + b
|
| 114 |
+
return mu
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 118 |
+
def retrieve_timesteps(
|
| 119 |
+
scheduler,
|
| 120 |
+
num_inference_steps: Optional[int] = None,
|
| 121 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 122 |
+
timesteps: Optional[List[int]] = None,
|
| 123 |
+
sigmas: Optional[List[float]] = None,
|
| 124 |
+
**kwargs,
|
| 125 |
+
):
|
| 126 |
+
"""
|
| 127 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 128 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 129 |
+
|
| 130 |
+
Args:
|
| 131 |
+
scheduler (`SchedulerMixin`):
|
| 132 |
+
The scheduler to get timesteps from.
|
| 133 |
+
num_inference_steps (`int`):
|
| 134 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 135 |
+
must be `None`.
|
| 136 |
+
device (`str` or `torch.device`, *optional*):
|
| 137 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 138 |
+
timesteps (`List[int]`, *optional*):
|
| 139 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 140 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 141 |
+
sigmas (`List[float]`, *optional*):
|
| 142 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 143 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 144 |
+
|
| 145 |
+
Returns:
|
| 146 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 147 |
+
second element is the number of inference steps.
|
| 148 |
+
"""
|
| 149 |
+
if timesteps is not None and sigmas is not None:
|
| 150 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 151 |
+
if timesteps is not None:
|
| 152 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 153 |
+
if not accepts_timesteps:
|
| 154 |
+
raise ValueError(
|
| 155 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 156 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 157 |
+
)
|
| 158 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 159 |
+
timesteps = scheduler.timesteps
|
| 160 |
+
num_inference_steps = len(timesteps)
|
| 161 |
+
elif sigmas is not None:
|
| 162 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 163 |
+
if not accept_sigmas:
|
| 164 |
+
raise ValueError(
|
| 165 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 166 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 167 |
+
)
|
| 168 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 169 |
+
timesteps = scheduler.timesteps
|
| 170 |
+
num_inference_steps = len(timesteps)
|
| 171 |
+
else:
|
| 172 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 173 |
+
timesteps = scheduler.timesteps
|
| 174 |
+
return timesteps, num_inference_steps
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
class LibreFluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin):
|
| 178 |
+
r"""
|
| 179 |
+
The Flux pipeline for text-to-image generation.
|
| 180 |
+
|
| 181 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 182 |
+
|
| 183 |
+
Args:
|
| 184 |
+
transformer ([`FluxTransformer2DModel`]):
|
| 185 |
+
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
| 186 |
+
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
| 187 |
+
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
| 188 |
+
vae ([`AutoencoderKL`]):
|
| 189 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
| 190 |
+
text_encoder ([`CLIPTextModel`]):
|
| 191 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
| 192 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
| 193 |
+
text_encoder_2 ([`T5EncoderModel`]):
|
| 194 |
+
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
| 195 |
+
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
| 196 |
+
tokenizer (`CLIPTokenizer`):
|
| 197 |
+
Tokenizer of class
|
| 198 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
| 199 |
+
tokenizer_2 (`T5TokenizerFast`):
|
| 200 |
+
Second Tokenizer of class
|
| 201 |
+
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
| 202 |
+
"""
|
| 203 |
+
|
| 204 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae"
|
| 205 |
+
_optional_components = []
|
| 206 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
| 207 |
+
|
| 208 |
+
def __init__(
|
| 209 |
+
self,
|
| 210 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 211 |
+
vae: AutoencoderKL,
|
| 212 |
+
text_encoder: CLIPTextModel,
|
| 213 |
+
tokenizer: CLIPTokenizer,
|
| 214 |
+
text_encoder_2: T5EncoderModel,
|
| 215 |
+
tokenizer_2: T5TokenizerFast,
|
| 216 |
+
transformer: LibreFluxTransformer2DModel,
|
| 217 |
+
controlnet: Union[
|
| 218 |
+
LibreFluxControlNetModel, List[LibreFluxControlNetModel], Tuple[LibreFluxControlNetModel],
|
| 219 |
+
],
|
| 220 |
+
):
|
| 221 |
+
super().__init__()
|
| 222 |
+
|
| 223 |
+
self.register_modules(
|
| 224 |
+
vae=vae,
|
| 225 |
+
text_encoder=text_encoder,
|
| 226 |
+
text_encoder_2=text_encoder_2,
|
| 227 |
+
tokenizer=tokenizer,
|
| 228 |
+
tokenizer_2=tokenizer_2,
|
| 229 |
+
transformer=transformer,
|
| 230 |
+
scheduler=scheduler,
|
| 231 |
+
controlnet=controlnet,
|
| 232 |
+
)
|
| 233 |
+
self.vae_scale_factor = (
|
| 234 |
+
2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16
|
| 235 |
+
)
|
| 236 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
| 237 |
+
self.tokenizer_max_length = (
|
| 238 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
| 239 |
+
)
|
| 240 |
+
self.default_sample_size = 64
|
| 241 |
+
|
| 242 |
+
def _get_t5_prompt_embeds(
|
| 243 |
+
self,
|
| 244 |
+
prompt: Union[str, List[str]] = None,
|
| 245 |
+
num_images_per_prompt: int = 1,
|
| 246 |
+
max_sequence_length: int = 512,
|
| 247 |
+
device: Optional[torch.device] = None,
|
| 248 |
+
dtype: Optional[torch.dtype] = None,
|
| 249 |
+
):
|
| 250 |
+
device = device or self._execution_device
|
| 251 |
+
dtype = dtype or self.text_encoder.dtype
|
| 252 |
+
|
| 253 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 254 |
+
batch_size = len(prompt)
|
| 255 |
+
|
| 256 |
+
text_inputs = self.tokenizer_2(
|
| 257 |
+
prompt,
|
| 258 |
+
padding="max_length",
|
| 259 |
+
max_length=max_sequence_length,
|
| 260 |
+
truncation=True,
|
| 261 |
+
return_length=False,
|
| 262 |
+
return_overflowing_tokens=False,
|
| 263 |
+
return_tensors="pt",
|
| 264 |
+
)
|
| 265 |
+
text_input_ids = text_inputs.input_ids
|
| 266 |
+
untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
|
| 267 |
+
|
| 268 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 269 |
+
removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 270 |
+
logger.warning(
|
| 271 |
+
"The following part of your input was truncated because `max_sequence_length` is set to "
|
| 272 |
+
f" {max_sequence_length} tokens: {removed_text}"
|
| 273 |
+
)
|
| 274 |
+
|
| 275 |
+
prompt_embeds = self.text_encoder_2(text_input_ids.to(self.text_encoder_2.device), output_hidden_states=False)[0]
|
| 276 |
+
#prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
|
| 277 |
+
|
| 278 |
+
dtype = self.text_encoder_2.dtype
|
| 279 |
+
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
| 280 |
+
|
| 281 |
+
_, seq_len, _ = prompt_embeds.shape
|
| 282 |
+
|
| 283 |
+
# duplicate text embeddings for each generation per prompt
|
| 284 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 285 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
| 286 |
+
|
| 287 |
+
# ADD THIS: Get the attention mask and repeat it for each image
|
| 288 |
+
prompt_attention_mask = text_inputs.attention_mask.to(device=device, dtype=dtype)
|
| 289 |
+
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
|
| 290 |
+
|
| 291 |
+
# ADD THIS: Return the attention mask
|
| 292 |
+
return prompt_embeds, prompt_attention_mask
|
| 293 |
+
|
| 294 |
+
def _get_clip_prompt_embeds(
|
| 295 |
+
self,
|
| 296 |
+
prompt: Union[str, List[str]],
|
| 297 |
+
num_images_per_prompt: int = 1,
|
| 298 |
+
device: Optional[torch.device] = None,
|
| 299 |
+
):
|
| 300 |
+
device = device or self._execution_device
|
| 301 |
+
|
| 302 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 303 |
+
batch_size = len(prompt)
|
| 304 |
+
|
| 305 |
+
text_inputs = self.tokenizer(
|
| 306 |
+
prompt,
|
| 307 |
+
padding="max_length",
|
| 308 |
+
max_length=self.tokenizer_max_length,
|
| 309 |
+
truncation=True,
|
| 310 |
+
return_overflowing_tokens=False,
|
| 311 |
+
return_length=False,
|
| 312 |
+
return_tensors="pt",
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
text_input_ids = text_inputs.input_ids
|
| 316 |
+
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
| 317 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
| 318 |
+
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
|
| 319 |
+
logger.warning(
|
| 320 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
| 321 |
+
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
| 322 |
+
)
|
| 323 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(self.text_encoder.device), output_hidden_states=False)
|
| 324 |
+
#prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
| 325 |
+
|
| 326 |
+
# Use pooled output of CLIPTextModel
|
| 327 |
+
prompt_embeds = prompt_embeds.pooler_output
|
| 328 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
| 329 |
+
|
| 330 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
| 331 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
| 332 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
| 333 |
+
|
| 334 |
+
return prompt_embeds
|
| 335 |
+
|
| 336 |
+
def encode_prompt(
|
| 337 |
+
self,
|
| 338 |
+
prompt: Union[str, List[str]],
|
| 339 |
+
prompt_2: Union[str, List[str]],
|
| 340 |
+
device: Optional[torch.device] = None,
|
| 341 |
+
num_images_per_prompt: int = 1,
|
| 342 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 343 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 344 |
+
max_sequence_length: int = 512,
|
| 345 |
+
lora_scale: Optional[float] = None,
|
| 346 |
+
):
|
| 347 |
+
device = device or self._execution_device
|
| 348 |
+
|
| 349 |
+
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
| 350 |
+
self._lora_scale = lora_scale
|
| 351 |
+
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
| 352 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
| 353 |
+
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
| 354 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
| 355 |
+
|
| 356 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
| 357 |
+
|
| 358 |
+
if prompt_embeds is None:
|
| 359 |
+
prompt_2 = prompt_2 or prompt
|
| 360 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
| 361 |
+
|
| 362 |
+
pooled_prompt_embeds = self._get_clip_prompt_embeds(
|
| 363 |
+
prompt=prompt,
|
| 364 |
+
device=device,
|
| 365 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
# ADD THIS: Initialize mask and capture it from the T5 embedder
|
| 369 |
+
prompt_attention_mask = None
|
| 370 |
+
prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
|
| 371 |
+
prompt=prompt_2,
|
| 372 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 373 |
+
max_sequence_length=max_sequence_length,
|
| 374 |
+
device=device,
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
if self.text_encoder is not None:
|
| 378 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 379 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
| 380 |
+
if self.text_encoder_2 is not None:
|
| 381 |
+
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
| 382 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
| 383 |
+
|
| 384 |
+
# FIX: Get batch_size and create text_ids with the correct shape
|
| 385 |
+
batch_size = prompt_embeds.shape[0]
|
| 386 |
+
dtype = self.transformer.dtype
|
| 387 |
+
text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
| 388 |
+
|
| 389 |
+
return prompt_embeds, pooled_prompt_embeds, text_ids, prompt_attention_mask
|
| 390 |
+
|
| 391 |
+
def check_inputs(
|
| 392 |
+
self,
|
| 393 |
+
prompt,
|
| 394 |
+
prompt_2,
|
| 395 |
+
height,
|
| 396 |
+
width,
|
| 397 |
+
prompt_embeds=None,
|
| 398 |
+
pooled_prompt_embeds=None,
|
| 399 |
+
callback_on_step_end_tensor_inputs=None,
|
| 400 |
+
max_sequence_length=None,
|
| 401 |
+
):
|
| 402 |
+
if height % 8 != 0 or width % 8 != 0:
|
| 403 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
| 404 |
+
|
| 405 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
| 406 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
| 407 |
+
):
|
| 408 |
+
raise ValueError(
|
| 409 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
| 410 |
+
)
|
| 411 |
+
|
| 412 |
+
if prompt is not None and prompt_embeds is not None:
|
| 413 |
+
raise ValueError(
|
| 414 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 415 |
+
" only forward one of the two."
|
| 416 |
+
)
|
| 417 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
| 418 |
+
raise ValueError(
|
| 419 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
| 420 |
+
" only forward one of the two."
|
| 421 |
+
)
|
| 422 |
+
elif prompt is None and prompt_embeds is None:
|
| 423 |
+
raise ValueError(
|
| 424 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
| 425 |
+
)
|
| 426 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
| 427 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
| 428 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
| 429 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
| 430 |
+
|
| 431 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
| 432 |
+
raise ValueError(
|
| 433 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
| 434 |
+
)
|
| 435 |
+
|
| 436 |
+
if max_sequence_length is not None and max_sequence_length > 512:
|
| 437 |
+
raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
|
| 438 |
+
|
| 439 |
+
@staticmethod
|
| 440 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
|
| 441 |
+
# FIX: Correctly creates batched image IDs
|
| 442 |
+
def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
|
| 443 |
+
latent_image_ids = torch.zeros(height // 2, width // 2, 3)
|
| 444 |
+
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None]
|
| 445 |
+
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :]
|
| 446 |
+
|
| 447 |
+
latent_image_ids = latent_image_ids.unsqueeze(0).repeat(batch_size, 1, 1, 1)
|
| 448 |
+
|
| 449 |
+
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape[1:]
|
| 450 |
+
|
| 451 |
+
latent_image_ids = latent_image_ids.reshape(
|
| 452 |
+
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels
|
| 453 |
+
)
|
| 454 |
+
|
| 455 |
+
return latent_image_ids.to(device=device, dtype=dtype)
|
| 456 |
+
|
| 457 |
+
@staticmethod
|
| 458 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
|
| 459 |
+
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
| 460 |
+
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
| 461 |
+
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
| 462 |
+
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
| 463 |
+
|
| 464 |
+
return latents
|
| 465 |
+
|
| 466 |
+
@staticmethod
|
| 467 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
|
| 468 |
+
def _unpack_latents(latents, height, width, vae_scale_factor):
|
| 469 |
+
batch_size, num_patches, channels = latents.shape
|
| 470 |
+
|
| 471 |
+
height = height // vae_scale_factor
|
| 472 |
+
width = width // vae_scale_factor
|
| 473 |
+
|
| 474 |
+
latents = latents.view(batch_size, height, width, channels // 4, 2, 2)
|
| 475 |
+
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
| 476 |
+
|
| 477 |
+
latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2)
|
| 478 |
+
|
| 479 |
+
return latents
|
| 480 |
+
|
| 481 |
+
# Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents
|
| 482 |
+
def prepare_latents(
|
| 483 |
+
self,
|
| 484 |
+
batch_size,
|
| 485 |
+
num_channels_latents,
|
| 486 |
+
height,
|
| 487 |
+
width,
|
| 488 |
+
dtype,
|
| 489 |
+
device,
|
| 490 |
+
generator,
|
| 491 |
+
latents=None,
|
| 492 |
+
):
|
| 493 |
+
height = 2 * (int(height) // self.vae_scale_factor)
|
| 494 |
+
width = 2 * (int(width) // self.vae_scale_factor)
|
| 495 |
+
|
| 496 |
+
shape = (batch_size, num_channels_latents, height, width)
|
| 497 |
+
|
| 498 |
+
if latents is not None:
|
| 499 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
| 500 |
+
return latents.to(device=device, dtype=dtype), latent_image_ids
|
| 501 |
+
|
| 502 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
| 503 |
+
raise ValueError(
|
| 504 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
| 505 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
| 509 |
+
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
| 510 |
+
|
| 511 |
+
latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype)
|
| 512 |
+
|
| 513 |
+
return latents, latent_image_ids
|
| 514 |
+
|
| 515 |
+
# Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image
|
| 516 |
+
def prepare_image(
|
| 517 |
+
self,
|
| 518 |
+
image,
|
| 519 |
+
width,
|
| 520 |
+
height,
|
| 521 |
+
batch_size,
|
| 522 |
+
num_images_per_prompt,
|
| 523 |
+
device,
|
| 524 |
+
dtype,
|
| 525 |
+
do_classifier_free_guidance=False,
|
| 526 |
+
guess_mode=False,
|
| 527 |
+
):
|
| 528 |
+
if isinstance(image, torch.Tensor):
|
| 529 |
+
pass
|
| 530 |
+
else:
|
| 531 |
+
image = self.image_processor.preprocess(image, height=height, width=width)
|
| 532 |
+
|
| 533 |
+
image_batch_size = image.shape[0]
|
| 534 |
+
|
| 535 |
+
if image_batch_size == 1:
|
| 536 |
+
repeat_by = batch_size
|
| 537 |
+
else:
|
| 538 |
+
# image batch size is the same as prompt batch size
|
| 539 |
+
repeat_by = num_images_per_prompt
|
| 540 |
+
|
| 541 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
| 542 |
+
|
| 543 |
+
image = image.to(device=device, dtype=dtype)
|
| 544 |
+
|
| 545 |
+
if do_classifier_free_guidance and not guess_mode:
|
| 546 |
+
image = torch.cat([image] * 2)
|
| 547 |
+
|
| 548 |
+
return image
|
| 549 |
+
|
| 550 |
+
@property
|
| 551 |
+
def guidance_scale(self):
|
| 552 |
+
return self._guidance_scale
|
| 553 |
+
|
| 554 |
+
@property
|
| 555 |
+
def joint_attention_kwargs(self):
|
| 556 |
+
return self._joint_attention_kwargs
|
| 557 |
+
|
| 558 |
+
@property
|
| 559 |
+
def num_timesteps(self):
|
| 560 |
+
return self._num_timesteps
|
| 561 |
+
|
| 562 |
+
@property
|
| 563 |
+
def interrupt(self):
|
| 564 |
+
return self._interrupt
|
| 565 |
+
|
| 566 |
+
@torch.no_grad()
|
| 567 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 568 |
+
def __call__(
|
| 569 |
+
self,
|
| 570 |
+
prompt: Union[str, List[str]] = None,
|
| 571 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
| 572 |
+
height: Optional[int] = None,
|
| 573 |
+
width: Optional[int] = None,
|
| 574 |
+
num_inference_steps: int = 28,
|
| 575 |
+
timesteps: List[int] = None,
|
| 576 |
+
guidance_scale: float = 7.0,
|
| 577 |
+
control_image: PipelineImageInput = None,
|
| 578 |
+
control_mode: Optional[Union[int, List[int]]] = None,
|
| 579 |
+
control_image_undo_centering: bool = False,
|
| 580 |
+
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
|
| 581 |
+
num_images_per_prompt: Optional[int] = 1,
|
| 582 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 583 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 584 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 585 |
+
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 586 |
+
output_type: Optional[str] = "pil",
|
| 587 |
+
return_dict: bool = True,
|
| 588 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 589 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 590 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 591 |
+
max_sequence_length: int = 512,
|
| 592 |
+
negative_prompt: Optional[Union[str, List[str]]] = "",
|
| 593 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = "",
|
| 594 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 595 |
+
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 596 |
+
):
|
| 597 |
+
r"""
|
| 598 |
+
Function invoked when calling the pipeline for generation.
|
| 599 |
+
|
| 600 |
+
Args:
|
| 601 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 602 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 603 |
+
instead.
|
| 604 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
| 605 |
+
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
| 606 |
+
will be used instead
|
| 607 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 608 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 609 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
| 610 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
| 611 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 612 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 613 |
+
expense of slower inference.
|
| 614 |
+
timesteps (`List[int]`, *optional*):
|
| 615 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 616 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 617 |
+
passed will be used. Must be in descending order.
|
| 618 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
| 619 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 620 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 621 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 622 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 623 |
+
usually at the expense of lower image quality.
|
| 624 |
+
control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,:
|
| 625 |
+
`List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`):
|
| 626 |
+
The ControlNet input condition to provide guidance to the `unet` for generation. If the type is
|
| 627 |
+
specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted
|
| 628 |
+
as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or
|
| 629 |
+
width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`,
|
| 630 |
+
images must be passed as a list such that each element of the list can be correctly batched for input
|
| 631 |
+
to a single ControlNet.
|
| 632 |
+
controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0):
|
| 633 |
+
The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added
|
| 634 |
+
to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set
|
| 635 |
+
the corresponding scale as a list.
|
| 636 |
+
control_mode (`int` or `List[int]`,, *optional*, defaults to None):
|
| 637 |
+
The control mode when applying ControlNet-Union.
|
| 638 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
| 639 |
+
The number of images to generate per prompt.
|
| 640 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 641 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 642 |
+
to make generation deterministic.
|
| 643 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 644 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 645 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 646 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
| 647 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 648 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 649 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 650 |
+
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 651 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
| 652 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
| 653 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 654 |
+
The output format of the generate image. Choose between
|
| 655 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 656 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 657 |
+
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
|
| 658 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 659 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 660 |
+
`self.processor` in
|
| 661 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 662 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 663 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 664 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 665 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 666 |
+
`callback_on_step_end_tensor_inputs`.
|
| 667 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 668 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 669 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 670 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 671 |
+
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
| 672 |
+
|
| 673 |
+
Examples:
|
| 674 |
+
|
| 675 |
+
Returns:
|
| 676 |
+
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
|
| 677 |
+
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
|
| 678 |
+
images.
|
| 679 |
+
"""
|
| 680 |
+
|
| 681 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
| 682 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
| 683 |
+
|
| 684 |
+
# 1. Check inputs. Raise error if not correct
|
| 685 |
+
self.check_inputs(
|
| 686 |
+
prompt,
|
| 687 |
+
prompt_2,
|
| 688 |
+
height,
|
| 689 |
+
width,
|
| 690 |
+
prompt_embeds=prompt_embeds,
|
| 691 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 692 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 693 |
+
max_sequence_length=max_sequence_length,
|
| 694 |
+
)
|
| 695 |
+
|
| 696 |
+
self._guidance_scale = guidance_scale
|
| 697 |
+
self._joint_attention_kwargs = joint_attention_kwargs
|
| 698 |
+
self._interrupt = False
|
| 699 |
+
|
| 700 |
+
# 2. Define call parameters
|
| 701 |
+
if prompt is not None and isinstance(prompt, str):
|
| 702 |
+
batch_size = 1
|
| 703 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 704 |
+
batch_size = len(prompt)
|
| 705 |
+
else:
|
| 706 |
+
batch_size = prompt_embeds.shape[0]
|
| 707 |
+
|
| 708 |
+
device = self._execution_device
|
| 709 |
+
dtype = self.transformer.dtype
|
| 710 |
+
|
| 711 |
+
lora_scale = (
|
| 712 |
+
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
| 713 |
+
)
|
| 714 |
+
# 💡 ADD THIS: Capture the attention_mask from encode_prompt
|
| 715 |
+
(
|
| 716 |
+
prompt_embeds,
|
| 717 |
+
pooled_prompt_embeds,
|
| 718 |
+
text_ids,
|
| 719 |
+
attention_mask,
|
| 720 |
+
) = self.encode_prompt(
|
| 721 |
+
prompt=prompt,
|
| 722 |
+
prompt_2=prompt_2,
|
| 723 |
+
prompt_embeds=prompt_embeds,
|
| 724 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 725 |
+
device=device,
|
| 726 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 727 |
+
max_sequence_length=max_sequence_length,
|
| 728 |
+
lora_scale=lora_scale,
|
| 729 |
+
)
|
| 730 |
+
|
| 731 |
+
# ✨ FIX: Encode negative prompts for CFG
|
| 732 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 733 |
+
if do_classifier_free_guidance:
|
| 734 |
+
if negative_prompt_embeds is None or negative_pooled_prompt_embeds is None:
|
| 735 |
+
negative_prompt = negative_prompt or ""
|
| 736 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
| 737 |
+
(negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids, negative_attention_mask) = self.encode_prompt(
|
| 738 |
+
prompt=negative_prompt, prompt_2=negative_prompt_2, device=device,
|
| 739 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 740 |
+
max_sequence_length=max_sequence_length, lora_scale=lora_scale,
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
|
| 744 |
+
# 3. Prepare control image
|
| 745 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 746 |
+
|
| 747 |
+
if type(self.controlnet) == FullyShardedDataParallel:
|
| 748 |
+
inner_module = self.controlnet._fsdp_wrapped_module
|
| 749 |
+
else:
|
| 750 |
+
inner_module = self.controlnet
|
| 751 |
+
|
| 752 |
+
if isinstance(inner_module, LibreFluxControlNetModel):
|
| 753 |
+
control_image = self.prepare_image(
|
| 754 |
+
image=control_image,
|
| 755 |
+
width=width,
|
| 756 |
+
height=height,
|
| 757 |
+
batch_size=batch_size * num_images_per_prompt,
|
| 758 |
+
num_images_per_prompt=num_images_per_prompt,
|
| 759 |
+
device=device,
|
| 760 |
+
dtype=dtype,
|
| 761 |
+
)
|
| 762 |
+
|
| 763 |
+
if control_image_undo_centering:
|
| 764 |
+
if not self.image_processor.do_normalize:
|
| 765 |
+
raise ValueError(
|
| 766 |
+
"`control_image_undo_centering` only makes sense if `do_normalize==True` in the image processor"
|
| 767 |
+
)
|
| 768 |
+
control_image = control_image*0.5 + 0.5
|
| 769 |
+
|
| 770 |
+
height, width = control_image.shape[-2:]
|
| 771 |
+
|
| 772 |
+
#logger.warning(
|
| 773 |
+
# f"pipeline_flux_controlnet, control_image: {control_image.min()} {control_image.max()}"
|
| 774 |
+
#)
|
| 775 |
+
|
| 776 |
+
# vae encode
|
| 777 |
+
control_image = _maybe_to(control_image, device=self.vae.device)
|
| 778 |
+
control_image = self.vae.encode(control_image).latent_dist.sample()
|
| 779 |
+
control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor
|
| 780 |
+
control_image = _maybe_to(control_image, device=device)
|
| 781 |
+
# pack
|
| 782 |
+
height_control_image, width_control_image = control_image.shape[2:]
|
| 783 |
+
control_image = self._pack_latents(
|
| 784 |
+
control_image,
|
| 785 |
+
batch_size * num_images_per_prompt,
|
| 786 |
+
num_channels_latents,
|
| 787 |
+
height_control_image,
|
| 788 |
+
width_control_image,
|
| 789 |
+
)
|
| 790 |
+
|
| 791 |
+
# set control mode
|
| 792 |
+
if control_mode is not None:
|
| 793 |
+
control_mode = torch.tensor(control_mode).to(device, dtype=torch.long)
|
| 794 |
+
control_mode = control_mode.reshape([-1, 1])
|
| 795 |
+
|
| 796 |
+
|
| 797 |
+
# set control mode
|
| 798 |
+
control_mode_ = []
|
| 799 |
+
if isinstance(control_mode, list):
|
| 800 |
+
for cmode in control_mode:
|
| 801 |
+
if cmode is None:
|
| 802 |
+
control_mode_.append(-1)
|
| 803 |
+
else:
|
| 804 |
+
control_mode_.append(cmode)
|
| 805 |
+
control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long)
|
| 806 |
+
control_mode = control_mode.reshape([-1, 1])
|
| 807 |
+
|
| 808 |
+
# 4. Prepare latent variables
|
| 809 |
+
num_channels_latents = self.transformer.config.in_channels // 4
|
| 810 |
+
latents, latent_image_ids = self.prepare_latents(
|
| 811 |
+
batch_size * num_images_per_prompt,
|
| 812 |
+
num_channels_latents,
|
| 813 |
+
height,
|
| 814 |
+
width,
|
| 815 |
+
prompt_embeds.dtype,
|
| 816 |
+
device,
|
| 817 |
+
generator,
|
| 818 |
+
latents,
|
| 819 |
+
)
|
| 820 |
+
|
| 821 |
+
# 5. Prepare timesteps
|
| 822 |
+
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
| 823 |
+
image_seq_len = latents.shape[1]
|
| 824 |
+
mu = calculate_shift(
|
| 825 |
+
image_seq_len,
|
| 826 |
+
self.scheduler.config.base_image_seq_len,
|
| 827 |
+
self.scheduler.config.max_image_seq_len,
|
| 828 |
+
self.scheduler.config.base_shift,
|
| 829 |
+
self.scheduler.config.max_shift,
|
| 830 |
+
)
|
| 831 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
| 832 |
+
self.scheduler,
|
| 833 |
+
num_inference_steps,
|
| 834 |
+
device,
|
| 835 |
+
timesteps,
|
| 836 |
+
sigmas,
|
| 837 |
+
mu=mu,
|
| 838 |
+
)
|
| 839 |
+
|
| 840 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 841 |
+
self._num_timesteps = len(timesteps)
|
| 842 |
+
|
| 843 |
+
# 6. Denoising loop
|
| 844 |
+
target_device = self.transformer.device
|
| 845 |
+
self.controlnet.to(target_device)
|
| 846 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
| 847 |
+
for i, t in enumerate(timesteps):
|
| 848 |
+
if self.interrupt:
|
| 849 |
+
continue
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
# FIX: BATCH INPUTS FOR CFG
|
| 853 |
+
if do_classifier_free_guidance:
|
| 854 |
+
latent_model_input = torch.cat([latents] * 2)
|
| 855 |
+
current_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
| 856 |
+
current_pooled_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds])
|
| 857 |
+
current_attention_mask = torch.cat([negative_attention_mask, attention_mask])
|
| 858 |
+
current_text_ids = torch.cat([negative_text_ids, text_ids])
|
| 859 |
+
current_img_ids = torch.cat([latent_image_ids] * 2)
|
| 860 |
+
current_control_image = torch.cat([control_image] * 2) if isinstance(control_image, torch.Tensor) else [torch.cat([c_img] * 2) for c_img in control_image]
|
| 861 |
+
else:
|
| 862 |
+
latent_model_input = latents
|
| 863 |
+
current_prompt_embeds = prompt_embeds
|
| 864 |
+
current_pooled_embeds = pooled_prompt_embeds
|
| 865 |
+
current_attention_mask = attention_mask
|
| 866 |
+
current_text_ids = text_ids
|
| 867 |
+
current_img_ids = latent_image_ids
|
| 868 |
+
current_control_image = control_image
|
| 869 |
+
|
| 870 |
+
# FIX: Integrate with device handling
|
| 871 |
+
target_device = self.transformer.device
|
| 872 |
+
|
| 873 |
+
# Move all inputs to the target device
|
| 874 |
+
latent_model_input = _maybe_to(latent_model_input, device=target_device)
|
| 875 |
+
current_prompt_embeds = _maybe_to(current_prompt_embeds, device=target_device)
|
| 876 |
+
current_pooled_embeds = _maybe_to(current_pooled_embeds, device=target_device)
|
| 877 |
+
current_attention_mask = _maybe_to(current_attention_mask, device=target_device)
|
| 878 |
+
current_text_ids = _maybe_to(current_text_ids, device=target_device)
|
| 879 |
+
current_img_ids = _maybe_to(current_img_ids, device=target_device)
|
| 880 |
+
if isinstance(current_control_image, torch.Tensor):
|
| 881 |
+
current_control_image = _maybe_to(current_control_image, device=target_device)
|
| 882 |
+
else:
|
| 883 |
+
current_control_image = [ _maybe_to(c, device=target_device) for c in current_control_image ]
|
| 884 |
+
control_mode = _maybe_to(control_mode, device=target_device) if control_mode is not None else None
|
| 885 |
+
|
| 886 |
+
t_model = t.expand(latent_model_input.shape[0]).to(target_device)
|
| 887 |
+
|
| 888 |
+
|
| 889 |
+
# Model calls
|
| 890 |
+
controlnet_block_samples, controlnet_single_block_samples = self.controlnet(
|
| 891 |
+
hidden_states=latent_model_input,
|
| 892 |
+
controlnet_cond=current_control_image,
|
| 893 |
+
controlnet_mode=control_mode,
|
| 894 |
+
conditioning_scale=controlnet_conditioning_scale,
|
| 895 |
+
timestep=(t_model / 1000),
|
| 896 |
+
guidance=None,
|
| 897 |
+
pooled_projections=current_pooled_embeds,
|
| 898 |
+
encoder_hidden_states=current_prompt_embeds,
|
| 899 |
+
attention_mask=current_attention_mask,
|
| 900 |
+
txt_ids=current_text_ids,
|
| 901 |
+
img_ids=current_img_ids,
|
| 902 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 903 |
+
return_dict=False
|
| 904 |
+
)
|
| 905 |
+
|
| 906 |
+
controlnet_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_block_samples]
|
| 907 |
+
controlnet_single_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_single_block_samples]
|
| 908 |
+
|
| 909 |
+
noise_pred = self.transformer(
|
| 910 |
+
hidden_states=latent_model_input,
|
| 911 |
+
timestep=(t_model / 1000),
|
| 912 |
+
guidance=None,
|
| 913 |
+
pooled_projections=current_pooled_embeds,
|
| 914 |
+
encoder_hidden_states=current_prompt_embeds,
|
| 915 |
+
attention_mask=current_attention_mask,
|
| 916 |
+
controlnet_block_samples=controlnet_block_samples,
|
| 917 |
+
controlnet_single_block_samples=controlnet_single_block_samples,
|
| 918 |
+
txt_ids=current_text_ids,
|
| 919 |
+
img_ids=current_img_ids,
|
| 920 |
+
joint_attention_kwargs=self.joint_attention_kwargs,
|
| 921 |
+
return_dict=False
|
| 922 |
+
)[0]
|
| 923 |
+
|
| 924 |
+
# FIX: Apply CFG formula
|
| 925 |
+
if do_classifier_free_guidance:
|
| 926 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
| 927 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
| 928 |
+
|
| 929 |
+
## Probably not needed
|
| 930 |
+
#noise_pred = noise_pred.to(latents.device)
|
| 931 |
+
|
| 932 |
+
latents_dtype = latents.dtype
|
| 933 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 934 |
+
|
| 935 |
+
if latents.dtype != latents_dtype:
|
| 936 |
+
if torch.backends.mps.is_available():
|
| 937 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
| 938 |
+
latents = latents.to(latents_dtype)
|
| 939 |
+
|
| 940 |
+
if callback_on_step_end is not None:
|
| 941 |
+
callback_kwargs = {}
|
| 942 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 943 |
+
callback_kwargs[k] = locals()[k]
|
| 944 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 945 |
+
|
| 946 |
+
latents = callback_outputs.pop("latents", latents)
|
| 947 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 948 |
+
|
| 949 |
+
# call the callback, if provided
|
| 950 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 951 |
+
progress_bar.update()
|
| 952 |
+
|
| 953 |
+
if XLA_AVAILABLE:
|
| 954 |
+
xm.mark_step()
|
| 955 |
+
|
| 956 |
+
if output_type == "latent":
|
| 957 |
+
image = latents
|
| 958 |
+
|
| 959 |
+
else:
|
| 960 |
+
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
| 961 |
+
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
| 962 |
+
|
| 963 |
+
latents = _maybe_to(latents, device=self.vae.device)
|
| 964 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
| 965 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
| 966 |
+
|
| 967 |
+
# Offload all models
|
| 968 |
+
self.maybe_free_model_hooks()
|
| 969 |
+
|
| 970 |
+
if not return_dict:
|
| 971 |
+
return (image,)
|
| 972 |
+
|
| 973 |
+
return FluxPipelineOutput(images=image)
|
scheduler/scheduler_config.json
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "FlowMatchEulerDiscreteScheduler",
|
| 3 |
+
"_diffusers_version": "0.30.0.dev0",
|
| 4 |
+
"base_image_seq_len": 256,
|
| 5 |
+
"base_shift": 0.5,
|
| 6 |
+
"max_image_seq_len": 4096,
|
| 7 |
+
"max_shift": 1.15,
|
| 8 |
+
"num_train_timesteps": 1000,
|
| 9 |
+
"shift": 1.0,
|
| 10 |
+
"use_dynamic_shifting": false
|
| 11 |
+
}
|
text_encoder/config.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "openai/clip-vit-large-patch14",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"CLIPTextModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"dropout": 0.0,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "quick_gelu",
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_factor": 1.0,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 3072,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 77,
|
| 17 |
+
"model_type": "clip_text_model",
|
| 18 |
+
"num_attention_heads": 12,
|
| 19 |
+
"num_hidden_layers": 12,
|
| 20 |
+
"pad_token_id": 1,
|
| 21 |
+
"projection_dim": 768,
|
| 22 |
+
"torch_dtype": "bfloat16",
|
| 23 |
+
"transformers_version": "4.43.3",
|
| 24 |
+
"vocab_size": 49408
|
| 25 |
+
}
|
text_encoder/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:893d67a23f4693ed42cdab4cbad7fe3e727cf59609c40da28a46b5470f9ed082
|
| 3 |
+
size 246144352
|
text_encoder_2/config.json
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "google/t5-v1_1-xxl",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"T5EncoderModel"
|
| 5 |
+
],
|
| 6 |
+
"classifier_dropout": 0.0,
|
| 7 |
+
"d_ff": 10240,
|
| 8 |
+
"d_kv": 64,
|
| 9 |
+
"d_model": 4096,
|
| 10 |
+
"decoder_start_token_id": 0,
|
| 11 |
+
"dense_act_fn": "gelu_new",
|
| 12 |
+
"dropout_rate": 0.1,
|
| 13 |
+
"eos_token_id": 1,
|
| 14 |
+
"feed_forward_proj": "gated-gelu",
|
| 15 |
+
"initializer_factor": 1.0,
|
| 16 |
+
"is_encoder_decoder": true,
|
| 17 |
+
"is_gated_act": true,
|
| 18 |
+
"layer_norm_epsilon": 1e-06,
|
| 19 |
+
"model_type": "t5",
|
| 20 |
+
"num_decoder_layers": 24,
|
| 21 |
+
"num_heads": 64,
|
| 22 |
+
"num_layers": 24,
|
| 23 |
+
"output_past": true,
|
| 24 |
+
"pad_token_id": 0,
|
| 25 |
+
"relative_attention_max_distance": 128,
|
| 26 |
+
"relative_attention_num_buckets": 32,
|
| 27 |
+
"tie_word_embeddings": false,
|
| 28 |
+
"torch_dtype": "bfloat16",
|
| 29 |
+
"transformers_version": "4.43.3",
|
| 30 |
+
"use_cache": true,
|
| 31 |
+
"vocab_size": 32128
|
| 32 |
+
}
|
text_encoder_2/model-00001-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ec87bffd1923e8b2774a6d240c922a41f6143081d52cf83b8fe39e9d838c893e
|
| 3 |
+
size 4994582224
|
text_encoder_2/model-00002-of-00002.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a5640855b301fcdbceddfa90ae8066cd9414aff020552a201a255ecf2059da00
|
| 3 |
+
size 4530066360
|
text_encoder_2/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 9524621312
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"encoder.block.0.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 7 |
+
"encoder.block.0.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 8 |
+
"encoder.block.0.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 9 |
+
"encoder.block.0.layer.0.SelfAttention.relative_attention_bias.weight": "model-00001-of-00002.safetensors",
|
| 10 |
+
"encoder.block.0.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 11 |
+
"encoder.block.0.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 12 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 13 |
+
"encoder.block.0.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 14 |
+
"encoder.block.0.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 15 |
+
"encoder.block.0.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 16 |
+
"encoder.block.1.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 17 |
+
"encoder.block.1.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 18 |
+
"encoder.block.1.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 19 |
+
"encoder.block.1.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 20 |
+
"encoder.block.1.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 21 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 22 |
+
"encoder.block.1.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 23 |
+
"encoder.block.1.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 24 |
+
"encoder.block.1.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 25 |
+
"encoder.block.10.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 26 |
+
"encoder.block.10.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 27 |
+
"encoder.block.10.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 28 |
+
"encoder.block.10.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 29 |
+
"encoder.block.10.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 30 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 31 |
+
"encoder.block.10.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 32 |
+
"encoder.block.10.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 33 |
+
"encoder.block.10.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 34 |
+
"encoder.block.11.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 35 |
+
"encoder.block.11.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 36 |
+
"encoder.block.11.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 37 |
+
"encoder.block.11.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 38 |
+
"encoder.block.11.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 39 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 40 |
+
"encoder.block.11.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 41 |
+
"encoder.block.11.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 42 |
+
"encoder.block.11.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 43 |
+
"encoder.block.12.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 44 |
+
"encoder.block.12.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 45 |
+
"encoder.block.12.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 46 |
+
"encoder.block.12.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 47 |
+
"encoder.block.12.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 48 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 49 |
+
"encoder.block.12.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 50 |
+
"encoder.block.12.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 51 |
+
"encoder.block.12.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 52 |
+
"encoder.block.13.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
| 53 |
+
"encoder.block.13.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 54 |
+
"encoder.block.13.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
| 55 |
+
"encoder.block.13.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
| 56 |
+
"encoder.block.13.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 57 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 58 |
+
"encoder.block.13.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 59 |
+
"encoder.block.13.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 60 |
+
"encoder.block.13.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 61 |
+
"encoder.block.14.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
| 62 |
+
"encoder.block.14.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 63 |
+
"encoder.block.14.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
| 64 |
+
"encoder.block.14.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
| 65 |
+
"encoder.block.14.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 66 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 67 |
+
"encoder.block.14.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 68 |
+
"encoder.block.14.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 69 |
+
"encoder.block.14.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 70 |
+
"encoder.block.15.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
| 71 |
+
"encoder.block.15.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 72 |
+
"encoder.block.15.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
| 73 |
+
"encoder.block.15.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
| 74 |
+
"encoder.block.15.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 75 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 76 |
+
"encoder.block.15.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 77 |
+
"encoder.block.15.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 78 |
+
"encoder.block.15.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 79 |
+
"encoder.block.16.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
| 80 |
+
"encoder.block.16.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 81 |
+
"encoder.block.16.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
| 82 |
+
"encoder.block.16.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
| 83 |
+
"encoder.block.16.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 84 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 85 |
+
"encoder.block.16.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 86 |
+
"encoder.block.16.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 87 |
+
"encoder.block.16.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 88 |
+
"encoder.block.17.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
| 89 |
+
"encoder.block.17.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 90 |
+
"encoder.block.17.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
| 91 |
+
"encoder.block.17.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
| 92 |
+
"encoder.block.17.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 93 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 94 |
+
"encoder.block.17.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 95 |
+
"encoder.block.17.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 96 |
+
"encoder.block.17.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 97 |
+
"encoder.block.18.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
| 98 |
+
"encoder.block.18.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 99 |
+
"encoder.block.18.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
| 100 |
+
"encoder.block.18.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
| 101 |
+
"encoder.block.18.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 102 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 103 |
+
"encoder.block.18.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 104 |
+
"encoder.block.18.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 105 |
+
"encoder.block.18.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 106 |
+
"encoder.block.19.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
| 107 |
+
"encoder.block.19.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 108 |
+
"encoder.block.19.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
| 109 |
+
"encoder.block.19.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
| 110 |
+
"encoder.block.19.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 111 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 112 |
+
"encoder.block.19.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 113 |
+
"encoder.block.19.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 114 |
+
"encoder.block.19.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 115 |
+
"encoder.block.2.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 116 |
+
"encoder.block.2.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 117 |
+
"encoder.block.2.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 118 |
+
"encoder.block.2.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 119 |
+
"encoder.block.2.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 120 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 121 |
+
"encoder.block.2.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 122 |
+
"encoder.block.2.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 123 |
+
"encoder.block.2.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 124 |
+
"encoder.block.20.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
| 125 |
+
"encoder.block.20.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 126 |
+
"encoder.block.20.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
| 127 |
+
"encoder.block.20.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
| 128 |
+
"encoder.block.20.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 129 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 130 |
+
"encoder.block.20.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 131 |
+
"encoder.block.20.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 132 |
+
"encoder.block.20.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 133 |
+
"encoder.block.21.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
| 134 |
+
"encoder.block.21.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 135 |
+
"encoder.block.21.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
| 136 |
+
"encoder.block.21.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
| 137 |
+
"encoder.block.21.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 138 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 139 |
+
"encoder.block.21.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 140 |
+
"encoder.block.21.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 141 |
+
"encoder.block.21.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 142 |
+
"encoder.block.22.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
| 143 |
+
"encoder.block.22.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 144 |
+
"encoder.block.22.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
| 145 |
+
"encoder.block.22.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
| 146 |
+
"encoder.block.22.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 147 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 148 |
+
"encoder.block.22.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 149 |
+
"encoder.block.22.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 150 |
+
"encoder.block.22.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 151 |
+
"encoder.block.23.layer.0.SelfAttention.k.weight": "model-00002-of-00002.safetensors",
|
| 152 |
+
"encoder.block.23.layer.0.SelfAttention.o.weight": "model-00002-of-00002.safetensors",
|
| 153 |
+
"encoder.block.23.layer.0.SelfAttention.q.weight": "model-00002-of-00002.safetensors",
|
| 154 |
+
"encoder.block.23.layer.0.SelfAttention.v.weight": "model-00002-of-00002.safetensors",
|
| 155 |
+
"encoder.block.23.layer.0.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 156 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_0.weight": "model-00002-of-00002.safetensors",
|
| 157 |
+
"encoder.block.23.layer.1.DenseReluDense.wi_1.weight": "model-00002-of-00002.safetensors",
|
| 158 |
+
"encoder.block.23.layer.1.DenseReluDense.wo.weight": "model-00002-of-00002.safetensors",
|
| 159 |
+
"encoder.block.23.layer.1.layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 160 |
+
"encoder.block.3.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 161 |
+
"encoder.block.3.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 162 |
+
"encoder.block.3.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 163 |
+
"encoder.block.3.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 164 |
+
"encoder.block.3.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 165 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 166 |
+
"encoder.block.3.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 167 |
+
"encoder.block.3.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 168 |
+
"encoder.block.3.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 169 |
+
"encoder.block.4.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 170 |
+
"encoder.block.4.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 171 |
+
"encoder.block.4.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 172 |
+
"encoder.block.4.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 173 |
+
"encoder.block.4.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 174 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 175 |
+
"encoder.block.4.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 176 |
+
"encoder.block.4.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 177 |
+
"encoder.block.4.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 178 |
+
"encoder.block.5.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 179 |
+
"encoder.block.5.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 180 |
+
"encoder.block.5.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 181 |
+
"encoder.block.5.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 182 |
+
"encoder.block.5.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 183 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 184 |
+
"encoder.block.5.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 185 |
+
"encoder.block.5.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 186 |
+
"encoder.block.5.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 187 |
+
"encoder.block.6.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 188 |
+
"encoder.block.6.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 189 |
+
"encoder.block.6.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 190 |
+
"encoder.block.6.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 191 |
+
"encoder.block.6.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 192 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 193 |
+
"encoder.block.6.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 194 |
+
"encoder.block.6.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 195 |
+
"encoder.block.6.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 196 |
+
"encoder.block.7.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 197 |
+
"encoder.block.7.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 198 |
+
"encoder.block.7.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 199 |
+
"encoder.block.7.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 200 |
+
"encoder.block.7.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 201 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 202 |
+
"encoder.block.7.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 203 |
+
"encoder.block.7.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 204 |
+
"encoder.block.7.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 205 |
+
"encoder.block.8.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 206 |
+
"encoder.block.8.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 207 |
+
"encoder.block.8.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 208 |
+
"encoder.block.8.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 209 |
+
"encoder.block.8.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 210 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 211 |
+
"encoder.block.8.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 212 |
+
"encoder.block.8.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 213 |
+
"encoder.block.8.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 214 |
+
"encoder.block.9.layer.0.SelfAttention.k.weight": "model-00001-of-00002.safetensors",
|
| 215 |
+
"encoder.block.9.layer.0.SelfAttention.o.weight": "model-00001-of-00002.safetensors",
|
| 216 |
+
"encoder.block.9.layer.0.SelfAttention.q.weight": "model-00001-of-00002.safetensors",
|
| 217 |
+
"encoder.block.9.layer.0.SelfAttention.v.weight": "model-00001-of-00002.safetensors",
|
| 218 |
+
"encoder.block.9.layer.0.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 219 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_0.weight": "model-00001-of-00002.safetensors",
|
| 220 |
+
"encoder.block.9.layer.1.DenseReluDense.wi_1.weight": "model-00001-of-00002.safetensors",
|
| 221 |
+
"encoder.block.9.layer.1.DenseReluDense.wo.weight": "model-00001-of-00002.safetensors",
|
| 222 |
+
"encoder.block.9.layer.1.layer_norm.weight": "model-00001-of-00002.safetensors",
|
| 223 |
+
"encoder.final_layer_norm.weight": "model-00002-of-00002.safetensors",
|
| 224 |
+
"shared.weight": "model-00001-of-00002.safetensors"
|
| 225 |
+
}
|
| 226 |
+
}
|
tokenizer/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer/special_tokens_map.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<|startoftext|>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "<|endoftext|>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "<|endoftext|>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"unk_token": {
|
| 24 |
+
"content": "<|endoftext|>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
}
|
| 30 |
+
}
|
tokenizer/tokenizer_config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"49406": {
|
| 5 |
+
"content": "<|startoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"49407": {
|
| 13 |
+
"content": "<|endoftext|>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
}
|
| 20 |
+
},
|
| 21 |
+
"bos_token": "<|startoftext|>",
|
| 22 |
+
"clean_up_tokenization_spaces": true,
|
| 23 |
+
"do_lower_case": true,
|
| 24 |
+
"eos_token": "<|endoftext|>",
|
| 25 |
+
"errors": "replace",
|
| 26 |
+
"model_max_length": 77,
|
| 27 |
+
"pad_token": "<|endoftext|>",
|
| 28 |
+
"tokenizer_class": "CLIPTokenizer",
|
| 29 |
+
"unk_token": "<|endoftext|>"
|
| 30 |
+
}
|
tokenizer/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_2/special_tokens_map.json
ADDED
|
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<extra_id_0>",
|
| 4 |
+
"<extra_id_1>",
|
| 5 |
+
"<extra_id_2>",
|
| 6 |
+
"<extra_id_3>",
|
| 7 |
+
"<extra_id_4>",
|
| 8 |
+
"<extra_id_5>",
|
| 9 |
+
"<extra_id_6>",
|
| 10 |
+
"<extra_id_7>",
|
| 11 |
+
"<extra_id_8>",
|
| 12 |
+
"<extra_id_9>",
|
| 13 |
+
"<extra_id_10>",
|
| 14 |
+
"<extra_id_11>",
|
| 15 |
+
"<extra_id_12>",
|
| 16 |
+
"<extra_id_13>",
|
| 17 |
+
"<extra_id_14>",
|
| 18 |
+
"<extra_id_15>",
|
| 19 |
+
"<extra_id_16>",
|
| 20 |
+
"<extra_id_17>",
|
| 21 |
+
"<extra_id_18>",
|
| 22 |
+
"<extra_id_19>",
|
| 23 |
+
"<extra_id_20>",
|
| 24 |
+
"<extra_id_21>",
|
| 25 |
+
"<extra_id_22>",
|
| 26 |
+
"<extra_id_23>",
|
| 27 |
+
"<extra_id_24>",
|
| 28 |
+
"<extra_id_25>",
|
| 29 |
+
"<extra_id_26>",
|
| 30 |
+
"<extra_id_27>",
|
| 31 |
+
"<extra_id_28>",
|
| 32 |
+
"<extra_id_29>",
|
| 33 |
+
"<extra_id_30>",
|
| 34 |
+
"<extra_id_31>",
|
| 35 |
+
"<extra_id_32>",
|
| 36 |
+
"<extra_id_33>",
|
| 37 |
+
"<extra_id_34>",
|
| 38 |
+
"<extra_id_35>",
|
| 39 |
+
"<extra_id_36>",
|
| 40 |
+
"<extra_id_37>",
|
| 41 |
+
"<extra_id_38>",
|
| 42 |
+
"<extra_id_39>",
|
| 43 |
+
"<extra_id_40>",
|
| 44 |
+
"<extra_id_41>",
|
| 45 |
+
"<extra_id_42>",
|
| 46 |
+
"<extra_id_43>",
|
| 47 |
+
"<extra_id_44>",
|
| 48 |
+
"<extra_id_45>",
|
| 49 |
+
"<extra_id_46>",
|
| 50 |
+
"<extra_id_47>",
|
| 51 |
+
"<extra_id_48>",
|
| 52 |
+
"<extra_id_49>",
|
| 53 |
+
"<extra_id_50>",
|
| 54 |
+
"<extra_id_51>",
|
| 55 |
+
"<extra_id_52>",
|
| 56 |
+
"<extra_id_53>",
|
| 57 |
+
"<extra_id_54>",
|
| 58 |
+
"<extra_id_55>",
|
| 59 |
+
"<extra_id_56>",
|
| 60 |
+
"<extra_id_57>",
|
| 61 |
+
"<extra_id_58>",
|
| 62 |
+
"<extra_id_59>",
|
| 63 |
+
"<extra_id_60>",
|
| 64 |
+
"<extra_id_61>",
|
| 65 |
+
"<extra_id_62>",
|
| 66 |
+
"<extra_id_63>",
|
| 67 |
+
"<extra_id_64>",
|
| 68 |
+
"<extra_id_65>",
|
| 69 |
+
"<extra_id_66>",
|
| 70 |
+
"<extra_id_67>",
|
| 71 |
+
"<extra_id_68>",
|
| 72 |
+
"<extra_id_69>",
|
| 73 |
+
"<extra_id_70>",
|
| 74 |
+
"<extra_id_71>",
|
| 75 |
+
"<extra_id_72>",
|
| 76 |
+
"<extra_id_73>",
|
| 77 |
+
"<extra_id_74>",
|
| 78 |
+
"<extra_id_75>",
|
| 79 |
+
"<extra_id_76>",
|
| 80 |
+
"<extra_id_77>",
|
| 81 |
+
"<extra_id_78>",
|
| 82 |
+
"<extra_id_79>",
|
| 83 |
+
"<extra_id_80>",
|
| 84 |
+
"<extra_id_81>",
|
| 85 |
+
"<extra_id_82>",
|
| 86 |
+
"<extra_id_83>",
|
| 87 |
+
"<extra_id_84>",
|
| 88 |
+
"<extra_id_85>",
|
| 89 |
+
"<extra_id_86>",
|
| 90 |
+
"<extra_id_87>",
|
| 91 |
+
"<extra_id_88>",
|
| 92 |
+
"<extra_id_89>",
|
| 93 |
+
"<extra_id_90>",
|
| 94 |
+
"<extra_id_91>",
|
| 95 |
+
"<extra_id_92>",
|
| 96 |
+
"<extra_id_93>",
|
| 97 |
+
"<extra_id_94>",
|
| 98 |
+
"<extra_id_95>",
|
| 99 |
+
"<extra_id_96>",
|
| 100 |
+
"<extra_id_97>",
|
| 101 |
+
"<extra_id_98>",
|
| 102 |
+
"<extra_id_99>"
|
| 103 |
+
],
|
| 104 |
+
"eos_token": {
|
| 105 |
+
"content": "</s>",
|
| 106 |
+
"lstrip": false,
|
| 107 |
+
"normalized": false,
|
| 108 |
+
"rstrip": false,
|
| 109 |
+
"single_word": false
|
| 110 |
+
},
|
| 111 |
+
"pad_token": {
|
| 112 |
+
"content": "<pad>",
|
| 113 |
+
"lstrip": false,
|
| 114 |
+
"normalized": false,
|
| 115 |
+
"rstrip": false,
|
| 116 |
+
"single_word": false
|
| 117 |
+
},
|
| 118 |
+
"unk_token": {
|
| 119 |
+
"content": "<unk>",
|
| 120 |
+
"lstrip": false,
|
| 121 |
+
"normalized": false,
|
| 122 |
+
"rstrip": false,
|
| 123 |
+
"single_word": false
|
| 124 |
+
}
|
| 125 |
+
}
|
tokenizer_2/spiece.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d60acb128cf7b7f2536e8f38a5b18a05535c9e14c7a355904270e15b0945ea86
|
| 3 |
+
size 791656
|
tokenizer_2/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_2/tokenizer_config.json
ADDED
|
@@ -0,0 +1,940 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": true,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<pad>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "</s>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "<unk>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"32000": {
|
| 29 |
+
"content": "<extra_id_99>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"32001": {
|
| 37 |
+
"content": "<extra_id_98>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"32002": {
|
| 45 |
+
"content": "<extra_id_97>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"32003": {
|
| 53 |
+
"content": "<extra_id_96>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
"32004": {
|
| 61 |
+
"content": "<extra_id_95>",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": false,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": true
|
| 67 |
+
},
|
| 68 |
+
"32005": {
|
| 69 |
+
"content": "<extra_id_94>",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": false,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": true
|
| 75 |
+
},
|
| 76 |
+
"32006": {
|
| 77 |
+
"content": "<extra_id_93>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": true
|
| 83 |
+
},
|
| 84 |
+
"32007": {
|
| 85 |
+
"content": "<extra_id_92>",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": false,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": true
|
| 91 |
+
},
|
| 92 |
+
"32008": {
|
| 93 |
+
"content": "<extra_id_91>",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": false,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": true
|
| 99 |
+
},
|
| 100 |
+
"32009": {
|
| 101 |
+
"content": "<extra_id_90>",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": false,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": true
|
| 107 |
+
},
|
| 108 |
+
"32010": {
|
| 109 |
+
"content": "<extra_id_89>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": true
|
| 115 |
+
},
|
| 116 |
+
"32011": {
|
| 117 |
+
"content": "<extra_id_88>",
|
| 118 |
+
"lstrip": false,
|
| 119 |
+
"normalized": false,
|
| 120 |
+
"rstrip": false,
|
| 121 |
+
"single_word": false,
|
| 122 |
+
"special": true
|
| 123 |
+
},
|
| 124 |
+
"32012": {
|
| 125 |
+
"content": "<extra_id_87>",
|
| 126 |
+
"lstrip": false,
|
| 127 |
+
"normalized": false,
|
| 128 |
+
"rstrip": false,
|
| 129 |
+
"single_word": false,
|
| 130 |
+
"special": true
|
| 131 |
+
},
|
| 132 |
+
"32013": {
|
| 133 |
+
"content": "<extra_id_86>",
|
| 134 |
+
"lstrip": false,
|
| 135 |
+
"normalized": false,
|
| 136 |
+
"rstrip": false,
|
| 137 |
+
"single_word": false,
|
| 138 |
+
"special": true
|
| 139 |
+
},
|
| 140 |
+
"32014": {
|
| 141 |
+
"content": "<extra_id_85>",
|
| 142 |
+
"lstrip": false,
|
| 143 |
+
"normalized": false,
|
| 144 |
+
"rstrip": false,
|
| 145 |
+
"single_word": false,
|
| 146 |
+
"special": true
|
| 147 |
+
},
|
| 148 |
+
"32015": {
|
| 149 |
+
"content": "<extra_id_84>",
|
| 150 |
+
"lstrip": false,
|
| 151 |
+
"normalized": false,
|
| 152 |
+
"rstrip": false,
|
| 153 |
+
"single_word": false,
|
| 154 |
+
"special": true
|
| 155 |
+
},
|
| 156 |
+
"32016": {
|
| 157 |
+
"content": "<extra_id_83>",
|
| 158 |
+
"lstrip": false,
|
| 159 |
+
"normalized": false,
|
| 160 |
+
"rstrip": false,
|
| 161 |
+
"single_word": false,
|
| 162 |
+
"special": true
|
| 163 |
+
},
|
| 164 |
+
"32017": {
|
| 165 |
+
"content": "<extra_id_82>",
|
| 166 |
+
"lstrip": false,
|
| 167 |
+
"normalized": false,
|
| 168 |
+
"rstrip": false,
|
| 169 |
+
"single_word": false,
|
| 170 |
+
"special": true
|
| 171 |
+
},
|
| 172 |
+
"32018": {
|
| 173 |
+
"content": "<extra_id_81>",
|
| 174 |
+
"lstrip": false,
|
| 175 |
+
"normalized": false,
|
| 176 |
+
"rstrip": false,
|
| 177 |
+
"single_word": false,
|
| 178 |
+
"special": true
|
| 179 |
+
},
|
| 180 |
+
"32019": {
|
| 181 |
+
"content": "<extra_id_80>",
|
| 182 |
+
"lstrip": false,
|
| 183 |
+
"normalized": false,
|
| 184 |
+
"rstrip": false,
|
| 185 |
+
"single_word": false,
|
| 186 |
+
"special": true
|
| 187 |
+
},
|
| 188 |
+
"32020": {
|
| 189 |
+
"content": "<extra_id_79>",
|
| 190 |
+
"lstrip": false,
|
| 191 |
+
"normalized": false,
|
| 192 |
+
"rstrip": false,
|
| 193 |
+
"single_word": false,
|
| 194 |
+
"special": true
|
| 195 |
+
},
|
| 196 |
+
"32021": {
|
| 197 |
+
"content": "<extra_id_78>",
|
| 198 |
+
"lstrip": false,
|
| 199 |
+
"normalized": false,
|
| 200 |
+
"rstrip": false,
|
| 201 |
+
"single_word": false,
|
| 202 |
+
"special": true
|
| 203 |
+
},
|
| 204 |
+
"32022": {
|
| 205 |
+
"content": "<extra_id_77>",
|
| 206 |
+
"lstrip": false,
|
| 207 |
+
"normalized": false,
|
| 208 |
+
"rstrip": false,
|
| 209 |
+
"single_word": false,
|
| 210 |
+
"special": true
|
| 211 |
+
},
|
| 212 |
+
"32023": {
|
| 213 |
+
"content": "<extra_id_76>",
|
| 214 |
+
"lstrip": false,
|
| 215 |
+
"normalized": false,
|
| 216 |
+
"rstrip": false,
|
| 217 |
+
"single_word": false,
|
| 218 |
+
"special": true
|
| 219 |
+
},
|
| 220 |
+
"32024": {
|
| 221 |
+
"content": "<extra_id_75>",
|
| 222 |
+
"lstrip": false,
|
| 223 |
+
"normalized": false,
|
| 224 |
+
"rstrip": false,
|
| 225 |
+
"single_word": false,
|
| 226 |
+
"special": true
|
| 227 |
+
},
|
| 228 |
+
"32025": {
|
| 229 |
+
"content": "<extra_id_74>",
|
| 230 |
+
"lstrip": false,
|
| 231 |
+
"normalized": false,
|
| 232 |
+
"rstrip": false,
|
| 233 |
+
"single_word": false,
|
| 234 |
+
"special": true
|
| 235 |
+
},
|
| 236 |
+
"32026": {
|
| 237 |
+
"content": "<extra_id_73>",
|
| 238 |
+
"lstrip": false,
|
| 239 |
+
"normalized": false,
|
| 240 |
+
"rstrip": false,
|
| 241 |
+
"single_word": false,
|
| 242 |
+
"special": true
|
| 243 |
+
},
|
| 244 |
+
"32027": {
|
| 245 |
+
"content": "<extra_id_72>",
|
| 246 |
+
"lstrip": false,
|
| 247 |
+
"normalized": false,
|
| 248 |
+
"rstrip": false,
|
| 249 |
+
"single_word": false,
|
| 250 |
+
"special": true
|
| 251 |
+
},
|
| 252 |
+
"32028": {
|
| 253 |
+
"content": "<extra_id_71>",
|
| 254 |
+
"lstrip": false,
|
| 255 |
+
"normalized": false,
|
| 256 |
+
"rstrip": false,
|
| 257 |
+
"single_word": false,
|
| 258 |
+
"special": true
|
| 259 |
+
},
|
| 260 |
+
"32029": {
|
| 261 |
+
"content": "<extra_id_70>",
|
| 262 |
+
"lstrip": false,
|
| 263 |
+
"normalized": false,
|
| 264 |
+
"rstrip": false,
|
| 265 |
+
"single_word": false,
|
| 266 |
+
"special": true
|
| 267 |
+
},
|
| 268 |
+
"32030": {
|
| 269 |
+
"content": "<extra_id_69>",
|
| 270 |
+
"lstrip": false,
|
| 271 |
+
"normalized": false,
|
| 272 |
+
"rstrip": false,
|
| 273 |
+
"single_word": false,
|
| 274 |
+
"special": true
|
| 275 |
+
},
|
| 276 |
+
"32031": {
|
| 277 |
+
"content": "<extra_id_68>",
|
| 278 |
+
"lstrip": false,
|
| 279 |
+
"normalized": false,
|
| 280 |
+
"rstrip": false,
|
| 281 |
+
"single_word": false,
|
| 282 |
+
"special": true
|
| 283 |
+
},
|
| 284 |
+
"32032": {
|
| 285 |
+
"content": "<extra_id_67>",
|
| 286 |
+
"lstrip": false,
|
| 287 |
+
"normalized": false,
|
| 288 |
+
"rstrip": false,
|
| 289 |
+
"single_word": false,
|
| 290 |
+
"special": true
|
| 291 |
+
},
|
| 292 |
+
"32033": {
|
| 293 |
+
"content": "<extra_id_66>",
|
| 294 |
+
"lstrip": false,
|
| 295 |
+
"normalized": false,
|
| 296 |
+
"rstrip": false,
|
| 297 |
+
"single_word": false,
|
| 298 |
+
"special": true
|
| 299 |
+
},
|
| 300 |
+
"32034": {
|
| 301 |
+
"content": "<extra_id_65>",
|
| 302 |
+
"lstrip": false,
|
| 303 |
+
"normalized": false,
|
| 304 |
+
"rstrip": false,
|
| 305 |
+
"single_word": false,
|
| 306 |
+
"special": true
|
| 307 |
+
},
|
| 308 |
+
"32035": {
|
| 309 |
+
"content": "<extra_id_64>",
|
| 310 |
+
"lstrip": false,
|
| 311 |
+
"normalized": false,
|
| 312 |
+
"rstrip": false,
|
| 313 |
+
"single_word": false,
|
| 314 |
+
"special": true
|
| 315 |
+
},
|
| 316 |
+
"32036": {
|
| 317 |
+
"content": "<extra_id_63>",
|
| 318 |
+
"lstrip": false,
|
| 319 |
+
"normalized": false,
|
| 320 |
+
"rstrip": false,
|
| 321 |
+
"single_word": false,
|
| 322 |
+
"special": true
|
| 323 |
+
},
|
| 324 |
+
"32037": {
|
| 325 |
+
"content": "<extra_id_62>",
|
| 326 |
+
"lstrip": false,
|
| 327 |
+
"normalized": false,
|
| 328 |
+
"rstrip": false,
|
| 329 |
+
"single_word": false,
|
| 330 |
+
"special": true
|
| 331 |
+
},
|
| 332 |
+
"32038": {
|
| 333 |
+
"content": "<extra_id_61>",
|
| 334 |
+
"lstrip": false,
|
| 335 |
+
"normalized": false,
|
| 336 |
+
"rstrip": false,
|
| 337 |
+
"single_word": false,
|
| 338 |
+
"special": true
|
| 339 |
+
},
|
| 340 |
+
"32039": {
|
| 341 |
+
"content": "<extra_id_60>",
|
| 342 |
+
"lstrip": false,
|
| 343 |
+
"normalized": false,
|
| 344 |
+
"rstrip": false,
|
| 345 |
+
"single_word": false,
|
| 346 |
+
"special": true
|
| 347 |
+
},
|
| 348 |
+
"32040": {
|
| 349 |
+
"content": "<extra_id_59>",
|
| 350 |
+
"lstrip": false,
|
| 351 |
+
"normalized": false,
|
| 352 |
+
"rstrip": false,
|
| 353 |
+
"single_word": false,
|
| 354 |
+
"special": true
|
| 355 |
+
},
|
| 356 |
+
"32041": {
|
| 357 |
+
"content": "<extra_id_58>",
|
| 358 |
+
"lstrip": false,
|
| 359 |
+
"normalized": false,
|
| 360 |
+
"rstrip": false,
|
| 361 |
+
"single_word": false,
|
| 362 |
+
"special": true
|
| 363 |
+
},
|
| 364 |
+
"32042": {
|
| 365 |
+
"content": "<extra_id_57>",
|
| 366 |
+
"lstrip": false,
|
| 367 |
+
"normalized": false,
|
| 368 |
+
"rstrip": false,
|
| 369 |
+
"single_word": false,
|
| 370 |
+
"special": true
|
| 371 |
+
},
|
| 372 |
+
"32043": {
|
| 373 |
+
"content": "<extra_id_56>",
|
| 374 |
+
"lstrip": false,
|
| 375 |
+
"normalized": false,
|
| 376 |
+
"rstrip": false,
|
| 377 |
+
"single_word": false,
|
| 378 |
+
"special": true
|
| 379 |
+
},
|
| 380 |
+
"32044": {
|
| 381 |
+
"content": "<extra_id_55>",
|
| 382 |
+
"lstrip": false,
|
| 383 |
+
"normalized": false,
|
| 384 |
+
"rstrip": false,
|
| 385 |
+
"single_word": false,
|
| 386 |
+
"special": true
|
| 387 |
+
},
|
| 388 |
+
"32045": {
|
| 389 |
+
"content": "<extra_id_54>",
|
| 390 |
+
"lstrip": false,
|
| 391 |
+
"normalized": false,
|
| 392 |
+
"rstrip": false,
|
| 393 |
+
"single_word": false,
|
| 394 |
+
"special": true
|
| 395 |
+
},
|
| 396 |
+
"32046": {
|
| 397 |
+
"content": "<extra_id_53>",
|
| 398 |
+
"lstrip": false,
|
| 399 |
+
"normalized": false,
|
| 400 |
+
"rstrip": false,
|
| 401 |
+
"single_word": false,
|
| 402 |
+
"special": true
|
| 403 |
+
},
|
| 404 |
+
"32047": {
|
| 405 |
+
"content": "<extra_id_52>",
|
| 406 |
+
"lstrip": false,
|
| 407 |
+
"normalized": false,
|
| 408 |
+
"rstrip": false,
|
| 409 |
+
"single_word": false,
|
| 410 |
+
"special": true
|
| 411 |
+
},
|
| 412 |
+
"32048": {
|
| 413 |
+
"content": "<extra_id_51>",
|
| 414 |
+
"lstrip": false,
|
| 415 |
+
"normalized": false,
|
| 416 |
+
"rstrip": false,
|
| 417 |
+
"single_word": false,
|
| 418 |
+
"special": true
|
| 419 |
+
},
|
| 420 |
+
"32049": {
|
| 421 |
+
"content": "<extra_id_50>",
|
| 422 |
+
"lstrip": false,
|
| 423 |
+
"normalized": false,
|
| 424 |
+
"rstrip": false,
|
| 425 |
+
"single_word": false,
|
| 426 |
+
"special": true
|
| 427 |
+
},
|
| 428 |
+
"32050": {
|
| 429 |
+
"content": "<extra_id_49>",
|
| 430 |
+
"lstrip": false,
|
| 431 |
+
"normalized": false,
|
| 432 |
+
"rstrip": false,
|
| 433 |
+
"single_word": false,
|
| 434 |
+
"special": true
|
| 435 |
+
},
|
| 436 |
+
"32051": {
|
| 437 |
+
"content": "<extra_id_48>",
|
| 438 |
+
"lstrip": false,
|
| 439 |
+
"normalized": false,
|
| 440 |
+
"rstrip": false,
|
| 441 |
+
"single_word": false,
|
| 442 |
+
"special": true
|
| 443 |
+
},
|
| 444 |
+
"32052": {
|
| 445 |
+
"content": "<extra_id_47>",
|
| 446 |
+
"lstrip": false,
|
| 447 |
+
"normalized": false,
|
| 448 |
+
"rstrip": false,
|
| 449 |
+
"single_word": false,
|
| 450 |
+
"special": true
|
| 451 |
+
},
|
| 452 |
+
"32053": {
|
| 453 |
+
"content": "<extra_id_46>",
|
| 454 |
+
"lstrip": false,
|
| 455 |
+
"normalized": false,
|
| 456 |
+
"rstrip": false,
|
| 457 |
+
"single_word": false,
|
| 458 |
+
"special": true
|
| 459 |
+
},
|
| 460 |
+
"32054": {
|
| 461 |
+
"content": "<extra_id_45>",
|
| 462 |
+
"lstrip": false,
|
| 463 |
+
"normalized": false,
|
| 464 |
+
"rstrip": false,
|
| 465 |
+
"single_word": false,
|
| 466 |
+
"special": true
|
| 467 |
+
},
|
| 468 |
+
"32055": {
|
| 469 |
+
"content": "<extra_id_44>",
|
| 470 |
+
"lstrip": false,
|
| 471 |
+
"normalized": false,
|
| 472 |
+
"rstrip": false,
|
| 473 |
+
"single_word": false,
|
| 474 |
+
"special": true
|
| 475 |
+
},
|
| 476 |
+
"32056": {
|
| 477 |
+
"content": "<extra_id_43>",
|
| 478 |
+
"lstrip": false,
|
| 479 |
+
"normalized": false,
|
| 480 |
+
"rstrip": false,
|
| 481 |
+
"single_word": false,
|
| 482 |
+
"special": true
|
| 483 |
+
},
|
| 484 |
+
"32057": {
|
| 485 |
+
"content": "<extra_id_42>",
|
| 486 |
+
"lstrip": false,
|
| 487 |
+
"normalized": false,
|
| 488 |
+
"rstrip": false,
|
| 489 |
+
"single_word": false,
|
| 490 |
+
"special": true
|
| 491 |
+
},
|
| 492 |
+
"32058": {
|
| 493 |
+
"content": "<extra_id_41>",
|
| 494 |
+
"lstrip": false,
|
| 495 |
+
"normalized": false,
|
| 496 |
+
"rstrip": false,
|
| 497 |
+
"single_word": false,
|
| 498 |
+
"special": true
|
| 499 |
+
},
|
| 500 |
+
"32059": {
|
| 501 |
+
"content": "<extra_id_40>",
|
| 502 |
+
"lstrip": false,
|
| 503 |
+
"normalized": false,
|
| 504 |
+
"rstrip": false,
|
| 505 |
+
"single_word": false,
|
| 506 |
+
"special": true
|
| 507 |
+
},
|
| 508 |
+
"32060": {
|
| 509 |
+
"content": "<extra_id_39>",
|
| 510 |
+
"lstrip": false,
|
| 511 |
+
"normalized": false,
|
| 512 |
+
"rstrip": false,
|
| 513 |
+
"single_word": false,
|
| 514 |
+
"special": true
|
| 515 |
+
},
|
| 516 |
+
"32061": {
|
| 517 |
+
"content": "<extra_id_38>",
|
| 518 |
+
"lstrip": false,
|
| 519 |
+
"normalized": false,
|
| 520 |
+
"rstrip": false,
|
| 521 |
+
"single_word": false,
|
| 522 |
+
"special": true
|
| 523 |
+
},
|
| 524 |
+
"32062": {
|
| 525 |
+
"content": "<extra_id_37>",
|
| 526 |
+
"lstrip": false,
|
| 527 |
+
"normalized": false,
|
| 528 |
+
"rstrip": false,
|
| 529 |
+
"single_word": false,
|
| 530 |
+
"special": true
|
| 531 |
+
},
|
| 532 |
+
"32063": {
|
| 533 |
+
"content": "<extra_id_36>",
|
| 534 |
+
"lstrip": false,
|
| 535 |
+
"normalized": false,
|
| 536 |
+
"rstrip": false,
|
| 537 |
+
"single_word": false,
|
| 538 |
+
"special": true
|
| 539 |
+
},
|
| 540 |
+
"32064": {
|
| 541 |
+
"content": "<extra_id_35>",
|
| 542 |
+
"lstrip": false,
|
| 543 |
+
"normalized": false,
|
| 544 |
+
"rstrip": false,
|
| 545 |
+
"single_word": false,
|
| 546 |
+
"special": true
|
| 547 |
+
},
|
| 548 |
+
"32065": {
|
| 549 |
+
"content": "<extra_id_34>",
|
| 550 |
+
"lstrip": false,
|
| 551 |
+
"normalized": false,
|
| 552 |
+
"rstrip": false,
|
| 553 |
+
"single_word": false,
|
| 554 |
+
"special": true
|
| 555 |
+
},
|
| 556 |
+
"32066": {
|
| 557 |
+
"content": "<extra_id_33>",
|
| 558 |
+
"lstrip": false,
|
| 559 |
+
"normalized": false,
|
| 560 |
+
"rstrip": false,
|
| 561 |
+
"single_word": false,
|
| 562 |
+
"special": true
|
| 563 |
+
},
|
| 564 |
+
"32067": {
|
| 565 |
+
"content": "<extra_id_32>",
|
| 566 |
+
"lstrip": false,
|
| 567 |
+
"normalized": false,
|
| 568 |
+
"rstrip": false,
|
| 569 |
+
"single_word": false,
|
| 570 |
+
"special": true
|
| 571 |
+
},
|
| 572 |
+
"32068": {
|
| 573 |
+
"content": "<extra_id_31>",
|
| 574 |
+
"lstrip": false,
|
| 575 |
+
"normalized": false,
|
| 576 |
+
"rstrip": false,
|
| 577 |
+
"single_word": false,
|
| 578 |
+
"special": true
|
| 579 |
+
},
|
| 580 |
+
"32069": {
|
| 581 |
+
"content": "<extra_id_30>",
|
| 582 |
+
"lstrip": false,
|
| 583 |
+
"normalized": false,
|
| 584 |
+
"rstrip": false,
|
| 585 |
+
"single_word": false,
|
| 586 |
+
"special": true
|
| 587 |
+
},
|
| 588 |
+
"32070": {
|
| 589 |
+
"content": "<extra_id_29>",
|
| 590 |
+
"lstrip": false,
|
| 591 |
+
"normalized": false,
|
| 592 |
+
"rstrip": false,
|
| 593 |
+
"single_word": false,
|
| 594 |
+
"special": true
|
| 595 |
+
},
|
| 596 |
+
"32071": {
|
| 597 |
+
"content": "<extra_id_28>",
|
| 598 |
+
"lstrip": false,
|
| 599 |
+
"normalized": false,
|
| 600 |
+
"rstrip": false,
|
| 601 |
+
"single_word": false,
|
| 602 |
+
"special": true
|
| 603 |
+
},
|
| 604 |
+
"32072": {
|
| 605 |
+
"content": "<extra_id_27>",
|
| 606 |
+
"lstrip": false,
|
| 607 |
+
"normalized": false,
|
| 608 |
+
"rstrip": false,
|
| 609 |
+
"single_word": false,
|
| 610 |
+
"special": true
|
| 611 |
+
},
|
| 612 |
+
"32073": {
|
| 613 |
+
"content": "<extra_id_26>",
|
| 614 |
+
"lstrip": false,
|
| 615 |
+
"normalized": false,
|
| 616 |
+
"rstrip": false,
|
| 617 |
+
"single_word": false,
|
| 618 |
+
"special": true
|
| 619 |
+
},
|
| 620 |
+
"32074": {
|
| 621 |
+
"content": "<extra_id_25>",
|
| 622 |
+
"lstrip": false,
|
| 623 |
+
"normalized": false,
|
| 624 |
+
"rstrip": false,
|
| 625 |
+
"single_word": false,
|
| 626 |
+
"special": true
|
| 627 |
+
},
|
| 628 |
+
"32075": {
|
| 629 |
+
"content": "<extra_id_24>",
|
| 630 |
+
"lstrip": false,
|
| 631 |
+
"normalized": false,
|
| 632 |
+
"rstrip": false,
|
| 633 |
+
"single_word": false,
|
| 634 |
+
"special": true
|
| 635 |
+
},
|
| 636 |
+
"32076": {
|
| 637 |
+
"content": "<extra_id_23>",
|
| 638 |
+
"lstrip": false,
|
| 639 |
+
"normalized": false,
|
| 640 |
+
"rstrip": false,
|
| 641 |
+
"single_word": false,
|
| 642 |
+
"special": true
|
| 643 |
+
},
|
| 644 |
+
"32077": {
|
| 645 |
+
"content": "<extra_id_22>",
|
| 646 |
+
"lstrip": false,
|
| 647 |
+
"normalized": false,
|
| 648 |
+
"rstrip": false,
|
| 649 |
+
"single_word": false,
|
| 650 |
+
"special": true
|
| 651 |
+
},
|
| 652 |
+
"32078": {
|
| 653 |
+
"content": "<extra_id_21>",
|
| 654 |
+
"lstrip": false,
|
| 655 |
+
"normalized": false,
|
| 656 |
+
"rstrip": false,
|
| 657 |
+
"single_word": false,
|
| 658 |
+
"special": true
|
| 659 |
+
},
|
| 660 |
+
"32079": {
|
| 661 |
+
"content": "<extra_id_20>",
|
| 662 |
+
"lstrip": false,
|
| 663 |
+
"normalized": false,
|
| 664 |
+
"rstrip": false,
|
| 665 |
+
"single_word": false,
|
| 666 |
+
"special": true
|
| 667 |
+
},
|
| 668 |
+
"32080": {
|
| 669 |
+
"content": "<extra_id_19>",
|
| 670 |
+
"lstrip": false,
|
| 671 |
+
"normalized": false,
|
| 672 |
+
"rstrip": false,
|
| 673 |
+
"single_word": false,
|
| 674 |
+
"special": true
|
| 675 |
+
},
|
| 676 |
+
"32081": {
|
| 677 |
+
"content": "<extra_id_18>",
|
| 678 |
+
"lstrip": false,
|
| 679 |
+
"normalized": false,
|
| 680 |
+
"rstrip": false,
|
| 681 |
+
"single_word": false,
|
| 682 |
+
"special": true
|
| 683 |
+
},
|
| 684 |
+
"32082": {
|
| 685 |
+
"content": "<extra_id_17>",
|
| 686 |
+
"lstrip": false,
|
| 687 |
+
"normalized": false,
|
| 688 |
+
"rstrip": false,
|
| 689 |
+
"single_word": false,
|
| 690 |
+
"special": true
|
| 691 |
+
},
|
| 692 |
+
"32083": {
|
| 693 |
+
"content": "<extra_id_16>",
|
| 694 |
+
"lstrip": false,
|
| 695 |
+
"normalized": false,
|
| 696 |
+
"rstrip": false,
|
| 697 |
+
"single_word": false,
|
| 698 |
+
"special": true
|
| 699 |
+
},
|
| 700 |
+
"32084": {
|
| 701 |
+
"content": "<extra_id_15>",
|
| 702 |
+
"lstrip": false,
|
| 703 |
+
"normalized": false,
|
| 704 |
+
"rstrip": false,
|
| 705 |
+
"single_word": false,
|
| 706 |
+
"special": true
|
| 707 |
+
},
|
| 708 |
+
"32085": {
|
| 709 |
+
"content": "<extra_id_14>",
|
| 710 |
+
"lstrip": false,
|
| 711 |
+
"normalized": false,
|
| 712 |
+
"rstrip": false,
|
| 713 |
+
"single_word": false,
|
| 714 |
+
"special": true
|
| 715 |
+
},
|
| 716 |
+
"32086": {
|
| 717 |
+
"content": "<extra_id_13>",
|
| 718 |
+
"lstrip": false,
|
| 719 |
+
"normalized": false,
|
| 720 |
+
"rstrip": false,
|
| 721 |
+
"single_word": false,
|
| 722 |
+
"special": true
|
| 723 |
+
},
|
| 724 |
+
"32087": {
|
| 725 |
+
"content": "<extra_id_12>",
|
| 726 |
+
"lstrip": false,
|
| 727 |
+
"normalized": false,
|
| 728 |
+
"rstrip": false,
|
| 729 |
+
"single_word": false,
|
| 730 |
+
"special": true
|
| 731 |
+
},
|
| 732 |
+
"32088": {
|
| 733 |
+
"content": "<extra_id_11>",
|
| 734 |
+
"lstrip": false,
|
| 735 |
+
"normalized": false,
|
| 736 |
+
"rstrip": false,
|
| 737 |
+
"single_word": false,
|
| 738 |
+
"special": true
|
| 739 |
+
},
|
| 740 |
+
"32089": {
|
| 741 |
+
"content": "<extra_id_10>",
|
| 742 |
+
"lstrip": false,
|
| 743 |
+
"normalized": false,
|
| 744 |
+
"rstrip": false,
|
| 745 |
+
"single_word": false,
|
| 746 |
+
"special": true
|
| 747 |
+
},
|
| 748 |
+
"32090": {
|
| 749 |
+
"content": "<extra_id_9>",
|
| 750 |
+
"lstrip": false,
|
| 751 |
+
"normalized": false,
|
| 752 |
+
"rstrip": false,
|
| 753 |
+
"single_word": false,
|
| 754 |
+
"special": true
|
| 755 |
+
},
|
| 756 |
+
"32091": {
|
| 757 |
+
"content": "<extra_id_8>",
|
| 758 |
+
"lstrip": false,
|
| 759 |
+
"normalized": false,
|
| 760 |
+
"rstrip": false,
|
| 761 |
+
"single_word": false,
|
| 762 |
+
"special": true
|
| 763 |
+
},
|
| 764 |
+
"32092": {
|
| 765 |
+
"content": "<extra_id_7>",
|
| 766 |
+
"lstrip": false,
|
| 767 |
+
"normalized": false,
|
| 768 |
+
"rstrip": false,
|
| 769 |
+
"single_word": false,
|
| 770 |
+
"special": true
|
| 771 |
+
},
|
| 772 |
+
"32093": {
|
| 773 |
+
"content": "<extra_id_6>",
|
| 774 |
+
"lstrip": false,
|
| 775 |
+
"normalized": false,
|
| 776 |
+
"rstrip": false,
|
| 777 |
+
"single_word": false,
|
| 778 |
+
"special": true
|
| 779 |
+
},
|
| 780 |
+
"32094": {
|
| 781 |
+
"content": "<extra_id_5>",
|
| 782 |
+
"lstrip": false,
|
| 783 |
+
"normalized": false,
|
| 784 |
+
"rstrip": false,
|
| 785 |
+
"single_word": false,
|
| 786 |
+
"special": true
|
| 787 |
+
},
|
| 788 |
+
"32095": {
|
| 789 |
+
"content": "<extra_id_4>",
|
| 790 |
+
"lstrip": false,
|
| 791 |
+
"normalized": false,
|
| 792 |
+
"rstrip": false,
|
| 793 |
+
"single_word": false,
|
| 794 |
+
"special": true
|
| 795 |
+
},
|
| 796 |
+
"32096": {
|
| 797 |
+
"content": "<extra_id_3>",
|
| 798 |
+
"lstrip": false,
|
| 799 |
+
"normalized": false,
|
| 800 |
+
"rstrip": false,
|
| 801 |
+
"single_word": false,
|
| 802 |
+
"special": true
|
| 803 |
+
},
|
| 804 |
+
"32097": {
|
| 805 |
+
"content": "<extra_id_2>",
|
| 806 |
+
"lstrip": false,
|
| 807 |
+
"normalized": false,
|
| 808 |
+
"rstrip": false,
|
| 809 |
+
"single_word": false,
|
| 810 |
+
"special": true
|
| 811 |
+
},
|
| 812 |
+
"32098": {
|
| 813 |
+
"content": "<extra_id_1>",
|
| 814 |
+
"lstrip": false,
|
| 815 |
+
"normalized": false,
|
| 816 |
+
"rstrip": false,
|
| 817 |
+
"single_word": false,
|
| 818 |
+
"special": true
|
| 819 |
+
},
|
| 820 |
+
"32099": {
|
| 821 |
+
"content": "<extra_id_0>",
|
| 822 |
+
"lstrip": false,
|
| 823 |
+
"normalized": false,
|
| 824 |
+
"rstrip": false,
|
| 825 |
+
"single_word": false,
|
| 826 |
+
"special": true
|
| 827 |
+
}
|
| 828 |
+
},
|
| 829 |
+
"additional_special_tokens": [
|
| 830 |
+
"<extra_id_0>",
|
| 831 |
+
"<extra_id_1>",
|
| 832 |
+
"<extra_id_2>",
|
| 833 |
+
"<extra_id_3>",
|
| 834 |
+
"<extra_id_4>",
|
| 835 |
+
"<extra_id_5>",
|
| 836 |
+
"<extra_id_6>",
|
| 837 |
+
"<extra_id_7>",
|
| 838 |
+
"<extra_id_8>",
|
| 839 |
+
"<extra_id_9>",
|
| 840 |
+
"<extra_id_10>",
|
| 841 |
+
"<extra_id_11>",
|
| 842 |
+
"<extra_id_12>",
|
| 843 |
+
"<extra_id_13>",
|
| 844 |
+
"<extra_id_14>",
|
| 845 |
+
"<extra_id_15>",
|
| 846 |
+
"<extra_id_16>",
|
| 847 |
+
"<extra_id_17>",
|
| 848 |
+
"<extra_id_18>",
|
| 849 |
+
"<extra_id_19>",
|
| 850 |
+
"<extra_id_20>",
|
| 851 |
+
"<extra_id_21>",
|
| 852 |
+
"<extra_id_22>",
|
| 853 |
+
"<extra_id_23>",
|
| 854 |
+
"<extra_id_24>",
|
| 855 |
+
"<extra_id_25>",
|
| 856 |
+
"<extra_id_26>",
|
| 857 |
+
"<extra_id_27>",
|
| 858 |
+
"<extra_id_28>",
|
| 859 |
+
"<extra_id_29>",
|
| 860 |
+
"<extra_id_30>",
|
| 861 |
+
"<extra_id_31>",
|
| 862 |
+
"<extra_id_32>",
|
| 863 |
+
"<extra_id_33>",
|
| 864 |
+
"<extra_id_34>",
|
| 865 |
+
"<extra_id_35>",
|
| 866 |
+
"<extra_id_36>",
|
| 867 |
+
"<extra_id_37>",
|
| 868 |
+
"<extra_id_38>",
|
| 869 |
+
"<extra_id_39>",
|
| 870 |
+
"<extra_id_40>",
|
| 871 |
+
"<extra_id_41>",
|
| 872 |
+
"<extra_id_42>",
|
| 873 |
+
"<extra_id_43>",
|
| 874 |
+
"<extra_id_44>",
|
| 875 |
+
"<extra_id_45>",
|
| 876 |
+
"<extra_id_46>",
|
| 877 |
+
"<extra_id_47>",
|
| 878 |
+
"<extra_id_48>",
|
| 879 |
+
"<extra_id_49>",
|
| 880 |
+
"<extra_id_50>",
|
| 881 |
+
"<extra_id_51>",
|
| 882 |
+
"<extra_id_52>",
|
| 883 |
+
"<extra_id_53>",
|
| 884 |
+
"<extra_id_54>",
|
| 885 |
+
"<extra_id_55>",
|
| 886 |
+
"<extra_id_56>",
|
| 887 |
+
"<extra_id_57>",
|
| 888 |
+
"<extra_id_58>",
|
| 889 |
+
"<extra_id_59>",
|
| 890 |
+
"<extra_id_60>",
|
| 891 |
+
"<extra_id_61>",
|
| 892 |
+
"<extra_id_62>",
|
| 893 |
+
"<extra_id_63>",
|
| 894 |
+
"<extra_id_64>",
|
| 895 |
+
"<extra_id_65>",
|
| 896 |
+
"<extra_id_66>",
|
| 897 |
+
"<extra_id_67>",
|
| 898 |
+
"<extra_id_68>",
|
| 899 |
+
"<extra_id_69>",
|
| 900 |
+
"<extra_id_70>",
|
| 901 |
+
"<extra_id_71>",
|
| 902 |
+
"<extra_id_72>",
|
| 903 |
+
"<extra_id_73>",
|
| 904 |
+
"<extra_id_74>",
|
| 905 |
+
"<extra_id_75>",
|
| 906 |
+
"<extra_id_76>",
|
| 907 |
+
"<extra_id_77>",
|
| 908 |
+
"<extra_id_78>",
|
| 909 |
+
"<extra_id_79>",
|
| 910 |
+
"<extra_id_80>",
|
| 911 |
+
"<extra_id_81>",
|
| 912 |
+
"<extra_id_82>",
|
| 913 |
+
"<extra_id_83>",
|
| 914 |
+
"<extra_id_84>",
|
| 915 |
+
"<extra_id_85>",
|
| 916 |
+
"<extra_id_86>",
|
| 917 |
+
"<extra_id_87>",
|
| 918 |
+
"<extra_id_88>",
|
| 919 |
+
"<extra_id_89>",
|
| 920 |
+
"<extra_id_90>",
|
| 921 |
+
"<extra_id_91>",
|
| 922 |
+
"<extra_id_92>",
|
| 923 |
+
"<extra_id_93>",
|
| 924 |
+
"<extra_id_94>",
|
| 925 |
+
"<extra_id_95>",
|
| 926 |
+
"<extra_id_96>",
|
| 927 |
+
"<extra_id_97>",
|
| 928 |
+
"<extra_id_98>",
|
| 929 |
+
"<extra_id_99>"
|
| 930 |
+
],
|
| 931 |
+
"clean_up_tokenization_spaces": true,
|
| 932 |
+
"eos_token": "</s>",
|
| 933 |
+
"extra_ids": 100,
|
| 934 |
+
"legacy": true,
|
| 935 |
+
"model_max_length": 512,
|
| 936 |
+
"pad_token": "<pad>",
|
| 937 |
+
"sp_model_kwargs": {},
|
| 938 |
+
"tokenizer_class": "T5Tokenizer",
|
| 939 |
+
"unk_token": "<unk>"
|
| 940 |
+
}
|
transformer/__init__.py
ADDED
|
File without changes
|
transformer/config.json
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "FluxTransformer2DModel",
|
| 3 |
+
"_diffusers_version": "0.30.0.dev0",
|
| 4 |
+
"_name_or_path": "/path/to/transformer",
|
| 5 |
+
"attention_head_dim": 128,
|
| 6 |
+
"axes_dims_rope": [
|
| 7 |
+
16,
|
| 8 |
+
56,
|
| 9 |
+
56
|
| 10 |
+
],
|
| 11 |
+
"guidance_embeds": false,
|
| 12 |
+
"in_channels": 64,
|
| 13 |
+
"joint_attention_dim": 4096,
|
| 14 |
+
"num_attention_heads": 24,
|
| 15 |
+
"num_layers": 19,
|
| 16 |
+
"num_single_layers": 38,
|
| 17 |
+
"patch_size": 1,
|
| 18 |
+
"pooled_projection_dim": 768
|
| 19 |
+
}
|
transformer/diffusion_pytorch_model-00001-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:18c2abe01a326d95bc836cfd5f68167118c0ecb2c8ccbcf5d6de4dbad47ca53c
|
| 3 |
+
size 9962580296
|
transformer/diffusion_pytorch_model-00002-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:828f131e306b17535c8c1d0a3c4aaa06f2a60a80612500da229829242f3ed422
|
| 3 |
+
size 9949328904
|
transformer/diffusion_pytorch_model-00003-of-00003.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a17988ef4255372dd902ff5742e647f8a60dcc83756d740d1fbcf81d13d38162
|
| 3 |
+
size 3870584832
|
transformer/diffusion_pytorch_model.safetensors.index.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
transformer/trans.py
ADDED
|
@@ -0,0 +1,766 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#################################
|
| 2 |
+
##### TRANSFORMER MERGE #########
|
| 3 |
+
#################################
|
| 4 |
+
|
| 5 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
| 13 |
+
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
| 14 |
+
from diffusers.models.attention import FeedForward
|
| 15 |
+
from diffusers.models.attention_processor import (
|
| 16 |
+
Attention,
|
| 17 |
+
AttentionProcessor,
|
| 18 |
+
)
|
| 19 |
+
from diffusers.models.modeling_utils import ModelMixin
|
| 20 |
+
from diffusers.models.normalization import (
|
| 21 |
+
AdaLayerNormContinuous,
|
| 22 |
+
AdaLayerNormZero,
|
| 23 |
+
AdaLayerNormZeroSingle,
|
| 24 |
+
)
|
| 25 |
+
from diffusers.utils import (
|
| 26 |
+
USE_PEFT_BACKEND,
|
| 27 |
+
is_torch_version,
|
| 28 |
+
logging,
|
| 29 |
+
scale_lora_layers,
|
| 30 |
+
unscale_lora_layers,
|
| 31 |
+
)
|
| 32 |
+
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
| 33 |
+
from diffusers.models.embeddings import (
|
| 34 |
+
CombinedTimestepGuidanceTextProjEmbeddings,
|
| 35 |
+
CombinedTimestepTextProjEmbeddings,
|
| 36 |
+
FluxPosEmbed,
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
| 40 |
+
from diffusers import FluxTransformer2DModel as OriginalFluxTransformer2DModel
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 44 |
+
|
| 45 |
+
is_flash_attn_available = False
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
class FluxAttnProcessor2_0:
|
| 50 |
+
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
| 51 |
+
|
| 52 |
+
def __init__(self):
|
| 53 |
+
if not hasattr(F, "scaled_dot_product_attention"):
|
| 54 |
+
raise ImportError(
|
| 55 |
+
"FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
def __call__(
|
| 59 |
+
self,
|
| 60 |
+
attn: Attention,
|
| 61 |
+
hidden_states: torch.FloatTensor,
|
| 62 |
+
encoder_hidden_states: torch.FloatTensor = None,
|
| 63 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
| 64 |
+
image_rotary_emb: Optional[torch.Tensor] = None,
|
| 65 |
+
) -> torch.FloatTensor:
|
| 66 |
+
batch_size, _, _ = (
|
| 67 |
+
hidden_states.shape
|
| 68 |
+
if encoder_hidden_states is None
|
| 69 |
+
else encoder_hidden_states.shape
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
# `sample` projections.
|
| 73 |
+
query = attn.to_q(hidden_states)
|
| 74 |
+
key = attn.to_k(hidden_states)
|
| 75 |
+
value = attn.to_v(hidden_states)
|
| 76 |
+
|
| 77 |
+
inner_dim = key.shape[-1]
|
| 78 |
+
head_dim = inner_dim // attn.heads
|
| 79 |
+
|
| 80 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 81 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 82 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
| 83 |
+
|
| 84 |
+
if attn.norm_q is not None:
|
| 85 |
+
query = attn.norm_q(query)
|
| 86 |
+
if attn.norm_k is not None:
|
| 87 |
+
key = attn.norm_k(key)
|
| 88 |
+
|
| 89 |
+
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
| 90 |
+
if encoder_hidden_states is not None:
|
| 91 |
+
# `context` projections.
|
| 92 |
+
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
| 93 |
+
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
| 94 |
+
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
| 95 |
+
|
| 96 |
+
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(
|
| 97 |
+
batch_size, -1, attn.heads, head_dim
|
| 98 |
+
).transpose(1, 2)
|
| 99 |
+
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(
|
| 100 |
+
batch_size, -1, attn.heads, head_dim
|
| 101 |
+
).transpose(1, 2)
|
| 102 |
+
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(
|
| 103 |
+
batch_size, -1, attn.heads, head_dim
|
| 104 |
+
).transpose(1, 2)
|
| 105 |
+
|
| 106 |
+
if attn.norm_added_q is not None:
|
| 107 |
+
encoder_hidden_states_query_proj = attn.norm_added_q(
|
| 108 |
+
encoder_hidden_states_query_proj
|
| 109 |
+
)
|
| 110 |
+
if attn.norm_added_k is not None:
|
| 111 |
+
encoder_hidden_states_key_proj = attn.norm_added_k(
|
| 112 |
+
encoder_hidden_states_key_proj
|
| 113 |
+
)
|
| 114 |
+
|
| 115 |
+
# attention
|
| 116 |
+
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
| 117 |
+
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
| 118 |
+
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
| 119 |
+
|
| 120 |
+
if image_rotary_emb is not None:
|
| 121 |
+
from diffusers.models.embeddings import apply_rotary_emb
|
| 122 |
+
|
| 123 |
+
query = apply_rotary_emb(query, image_rotary_emb)
|
| 124 |
+
key = apply_rotary_emb(key, image_rotary_emb)
|
| 125 |
+
|
| 126 |
+
if attention_mask is not None:
|
| 127 |
+
#print ('Attention Used')
|
| 128 |
+
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
|
| 129 |
+
attention_mask = (attention_mask > 0).bool()
|
| 130 |
+
# Edit 17 - match attn dtype to query d-type
|
| 131 |
+
attention_mask = attention_mask.to(
|
| 132 |
+
device=hidden_states.device, dtype=query.dtype
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
hidden_states = F.scaled_dot_product_attention(
|
| 136 |
+
query,
|
| 137 |
+
key,
|
| 138 |
+
value,
|
| 139 |
+
dropout_p=0.0,
|
| 140 |
+
is_causal=False,
|
| 141 |
+
attn_mask=attention_mask,
|
| 142 |
+
)
|
| 143 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(
|
| 144 |
+
batch_size, -1, attn.heads * head_dim
|
| 145 |
+
)
|
| 146 |
+
hidden_states = hidden_states.to(query.dtype)
|
| 147 |
+
|
| 148 |
+
if encoder_hidden_states is not None:
|
| 149 |
+
encoder_hidden_states, hidden_states = (
|
| 150 |
+
hidden_states[:, : encoder_hidden_states.shape[1]],
|
| 151 |
+
hidden_states[:, encoder_hidden_states.shape[1] :],
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
# linear proj
|
| 155 |
+
hidden_states = attn.to_out[0](hidden_states)
|
| 156 |
+
# dropout
|
| 157 |
+
hidden_states = attn.to_out[1](hidden_states)
|
| 158 |
+
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
| 159 |
+
|
| 160 |
+
return hidden_states, encoder_hidden_states
|
| 161 |
+
return hidden_states
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def expand_flux_attention_mask(
|
| 165 |
+
hidden_states: torch.Tensor,
|
| 166 |
+
attn_mask: torch.Tensor,
|
| 167 |
+
) -> torch.Tensor:
|
| 168 |
+
"""
|
| 169 |
+
Expand a mask so that the image is included.
|
| 170 |
+
"""
|
| 171 |
+
bsz = attn_mask.shape[0]
|
| 172 |
+
assert bsz == hidden_states.shape[0]
|
| 173 |
+
residual_seq_len = hidden_states.shape[1]
|
| 174 |
+
mask_seq_len = attn_mask.shape[1]
|
| 175 |
+
|
| 176 |
+
expanded_mask = torch.ones(bsz, residual_seq_len)
|
| 177 |
+
expanded_mask[:, :mask_seq_len] = attn_mask
|
| 178 |
+
|
| 179 |
+
return expanded_mask
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
@maybe_allow_in_graph
|
| 183 |
+
class FluxSingleTransformerBlock(nn.Module):
|
| 184 |
+
r"""
|
| 185 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
| 186 |
+
|
| 187 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 188 |
+
|
| 189 |
+
Parameters:
|
| 190 |
+
dim (`int`): The number of channels in the input and output.
|
| 191 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 192 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 193 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
| 194 |
+
processing of `context` conditions.
|
| 195 |
+
"""
|
| 196 |
+
|
| 197 |
+
def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0):
|
| 198 |
+
super().__init__()
|
| 199 |
+
self.mlp_hidden_dim = int(dim * mlp_ratio)
|
| 200 |
+
|
| 201 |
+
self.norm = AdaLayerNormZeroSingle(dim)
|
| 202 |
+
self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim)
|
| 203 |
+
self.act_mlp = nn.GELU(approximate="tanh")
|
| 204 |
+
self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim)
|
| 205 |
+
|
| 206 |
+
processor = FluxAttnProcessor2_0()
|
| 207 |
+
self.attn = Attention(
|
| 208 |
+
query_dim=dim,
|
| 209 |
+
cross_attention_dim=None,
|
| 210 |
+
dim_head=attention_head_dim,
|
| 211 |
+
heads=num_attention_heads,
|
| 212 |
+
out_dim=dim,
|
| 213 |
+
bias=True,
|
| 214 |
+
processor=processor,
|
| 215 |
+
qk_norm="rms_norm",
|
| 216 |
+
eps=1e-6,
|
| 217 |
+
pre_only=True,
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
def forward(
|
| 221 |
+
self,
|
| 222 |
+
hidden_states: torch.FloatTensor,
|
| 223 |
+
temb: torch.FloatTensor,
|
| 224 |
+
image_rotary_emb=None,
|
| 225 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 226 |
+
):
|
| 227 |
+
residual = hidden_states
|
| 228 |
+
norm_hidden_states, gate = self.norm(hidden_states, emb=temb)
|
| 229 |
+
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
| 230 |
+
|
| 231 |
+
if attention_mask is not None:
|
| 232 |
+
attention_mask = expand_flux_attention_mask(
|
| 233 |
+
hidden_states,
|
| 234 |
+
attention_mask,
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
attn_output = self.attn(
|
| 238 |
+
hidden_states=norm_hidden_states,
|
| 239 |
+
image_rotary_emb=image_rotary_emb,
|
| 240 |
+
attention_mask=attention_mask,
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
| 244 |
+
gate = gate.unsqueeze(1)
|
| 245 |
+
hidden_states = gate * self.proj_out(hidden_states)
|
| 246 |
+
hidden_states = residual + hidden_states
|
| 247 |
+
|
| 248 |
+
if hidden_states.dtype == torch.float16:
|
| 249 |
+
hidden_states = hidden_states.clip(-65504, 65504)
|
| 250 |
+
|
| 251 |
+
return hidden_states
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
@maybe_allow_in_graph
|
| 255 |
+
class FluxTransformerBlock(nn.Module):
|
| 256 |
+
r"""
|
| 257 |
+
A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3.
|
| 258 |
+
|
| 259 |
+
Reference: https://arxiv.org/abs/2403.03206
|
| 260 |
+
|
| 261 |
+
Parameters:
|
| 262 |
+
dim (`int`): The number of channels in the input and output.
|
| 263 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
| 264 |
+
attention_head_dim (`int`): The number of channels in each head.
|
| 265 |
+
context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the
|
| 266 |
+
processing of `context` conditions.
|
| 267 |
+
"""
|
| 268 |
+
|
| 269 |
+
def __init__(
|
| 270 |
+
self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6
|
| 271 |
+
):
|
| 272 |
+
super().__init__()
|
| 273 |
+
|
| 274 |
+
self.norm1 = AdaLayerNormZero(dim)
|
| 275 |
+
|
| 276 |
+
self.norm1_context = AdaLayerNormZero(dim)
|
| 277 |
+
|
| 278 |
+
if hasattr(F, "scaled_dot_product_attention"):
|
| 279 |
+
processor = FluxAttnProcessor2_0()
|
| 280 |
+
else:
|
| 281 |
+
raise ValueError(
|
| 282 |
+
"The current PyTorch version does not support the `scaled_dot_product_attention` function."
|
| 283 |
+
)
|
| 284 |
+
self.attn = Attention(
|
| 285 |
+
query_dim=dim,
|
| 286 |
+
cross_attention_dim=None,
|
| 287 |
+
added_kv_proj_dim=dim,
|
| 288 |
+
dim_head=attention_head_dim,
|
| 289 |
+
heads=num_attention_heads,
|
| 290 |
+
out_dim=dim,
|
| 291 |
+
context_pre_only=False,
|
| 292 |
+
bias=True,
|
| 293 |
+
processor=processor,
|
| 294 |
+
qk_norm=qk_norm,
|
| 295 |
+
eps=eps,
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 299 |
+
self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
| 300 |
+
|
| 301 |
+
self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6)
|
| 302 |
+
self.ff_context = FeedForward(
|
| 303 |
+
dim=dim, dim_out=dim, activation_fn="gelu-approximate"
|
| 304 |
+
)
|
| 305 |
+
|
| 306 |
+
# let chunk size default to None
|
| 307 |
+
self._chunk_size = None
|
| 308 |
+
self._chunk_dim = 0
|
| 309 |
+
|
| 310 |
+
def forward(
|
| 311 |
+
self,
|
| 312 |
+
hidden_states: torch.FloatTensor,
|
| 313 |
+
encoder_hidden_states: torch.FloatTensor,
|
| 314 |
+
temb: torch.FloatTensor,
|
| 315 |
+
image_rotary_emb=None,
|
| 316 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 317 |
+
):
|
| 318 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
| 319 |
+
hidden_states, emb=temb
|
| 320 |
+
)
|
| 321 |
+
|
| 322 |
+
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
|
| 323 |
+
self.norm1_context(encoder_hidden_states, emb=temb)
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
if attention_mask is not None:
|
| 327 |
+
attention_mask = expand_flux_attention_mask(
|
| 328 |
+
torch.cat([encoder_hidden_states, hidden_states], dim=1),
|
| 329 |
+
attention_mask,
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# Attention.
|
| 333 |
+
attention_outputs = self.attn(
|
| 334 |
+
hidden_states=norm_hidden_states,
|
| 335 |
+
encoder_hidden_states=norm_encoder_hidden_states,
|
| 336 |
+
image_rotary_emb=image_rotary_emb,
|
| 337 |
+
attention_mask=attention_mask,
|
| 338 |
+
)
|
| 339 |
+
if len(attention_outputs) == 2:
|
| 340 |
+
attn_output, context_attn_output = attention_outputs
|
| 341 |
+
elif len(attention_outputs) == 3:
|
| 342 |
+
attn_output, context_attn_output, ip_attn_output = attention_outputs
|
| 343 |
+
|
| 344 |
+
# Process attention outputs for the `hidden_states`.
|
| 345 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
| 346 |
+
hidden_states = hidden_states + attn_output
|
| 347 |
+
|
| 348 |
+
norm_hidden_states = self.norm2(hidden_states)
|
| 349 |
+
norm_hidden_states = (
|
| 350 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
| 351 |
+
)
|
| 352 |
+
|
| 353 |
+
ff_output = self.ff(norm_hidden_states)
|
| 354 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
| 355 |
+
|
| 356 |
+
hidden_states = hidden_states + ff_output
|
| 357 |
+
if len(attention_outputs) == 3:
|
| 358 |
+
hidden_states = hidden_states + ip_attn_output
|
| 359 |
+
|
| 360 |
+
# Process attention outputs for the `encoder_hidden_states`.
|
| 361 |
+
context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output
|
| 362 |
+
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
| 363 |
+
|
| 364 |
+
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
| 365 |
+
norm_encoder_hidden_states = (
|
| 366 |
+
norm_encoder_hidden_states * (1 + c_scale_mlp[:, None])
|
| 367 |
+
+ c_shift_mlp[:, None]
|
| 368 |
+
)
|
| 369 |
+
|
| 370 |
+
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
| 371 |
+
encoder_hidden_states = (
|
| 372 |
+
encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output
|
| 373 |
+
)
|
| 374 |
+
|
| 375 |
+
if encoder_hidden_states.dtype == torch.float16:
|
| 376 |
+
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
| 377 |
+
|
| 378 |
+
return encoder_hidden_states, hidden_states
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
class LibreFluxTransformer2DModel(
|
| 382 |
+
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
| 383 |
+
):
|
| 384 |
+
"""
|
| 385 |
+
The Transformer model introduced in Flux.
|
| 386 |
+
|
| 387 |
+
Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
|
| 388 |
+
|
| 389 |
+
Parameters:
|
| 390 |
+
patch_size (`int`): Patch size to turn the input data into small patches.
|
| 391 |
+
in_channels (`int`, *optional*, defaults to 16): The number of channels in the input.
|
| 392 |
+
num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use.
|
| 393 |
+
num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use.
|
| 394 |
+
attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head.
|
| 395 |
+
num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention.
|
| 396 |
+
joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
| 397 |
+
pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`.
|
| 398 |
+
guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings.
|
| 399 |
+
"""
|
| 400 |
+
|
| 401 |
+
_supports_gradient_checkpointing = True
|
| 402 |
+
|
| 403 |
+
@register_to_config
|
| 404 |
+
def __init__(
|
| 405 |
+
self,
|
| 406 |
+
patch_size: int = 1,
|
| 407 |
+
in_channels: int = 64,
|
| 408 |
+
num_layers: int = 19,
|
| 409 |
+
num_single_layers: int = 38,
|
| 410 |
+
attention_head_dim: int = 128,
|
| 411 |
+
num_attention_heads: int = 24,
|
| 412 |
+
joint_attention_dim: int = 4096,
|
| 413 |
+
pooled_projection_dim: int = 768,
|
| 414 |
+
guidance_embeds: bool = False,
|
| 415 |
+
axes_dims_rope: Tuple[int] = (16, 56, 56),
|
| 416 |
+
):
|
| 417 |
+
super().__init__()
|
| 418 |
+
self.out_channels = in_channels
|
| 419 |
+
self.inner_dim = (
|
| 420 |
+
self.config.num_attention_heads * self.config.attention_head_dim
|
| 421 |
+
)
|
| 422 |
+
|
| 423 |
+
self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope)
|
| 424 |
+
text_time_guidance_cls = (
|
| 425 |
+
CombinedTimestepGuidanceTextProjEmbeddings ### 3 input forward (timestep, guidance, pooled_projection)
|
| 426 |
+
if guidance_embeds
|
| 427 |
+
else CombinedTimestepTextProjEmbeddings #### 2 input forward (timestep, pooled_projection)
|
| 428 |
+
)
|
| 429 |
+
self.time_text_embed = text_time_guidance_cls(
|
| 430 |
+
embedding_dim=self.inner_dim,
|
| 431 |
+
pooled_projection_dim=self.config.pooled_projection_dim,
|
| 432 |
+
)
|
| 433 |
+
|
| 434 |
+
self.context_embedder = nn.Linear(
|
| 435 |
+
self.config.joint_attention_dim, self.inner_dim
|
| 436 |
+
)
|
| 437 |
+
self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim)
|
| 438 |
+
|
| 439 |
+
self.transformer_blocks = nn.ModuleList(
|
| 440 |
+
[
|
| 441 |
+
FluxTransformerBlock(
|
| 442 |
+
dim=self.inner_dim,
|
| 443 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 444 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 445 |
+
)
|
| 446 |
+
for i in range(self.config.num_layers)
|
| 447 |
+
]
|
| 448 |
+
)
|
| 449 |
+
|
| 450 |
+
self.single_transformer_blocks = nn.ModuleList(
|
| 451 |
+
[
|
| 452 |
+
FluxSingleTransformerBlock(
|
| 453 |
+
dim=self.inner_dim,
|
| 454 |
+
num_attention_heads=self.config.num_attention_heads,
|
| 455 |
+
attention_head_dim=self.config.attention_head_dim,
|
| 456 |
+
)
|
| 457 |
+
for i in range(self.config.num_single_layers)
|
| 458 |
+
]
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
self.norm_out = AdaLayerNormContinuous(
|
| 462 |
+
self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6
|
| 463 |
+
)
|
| 464 |
+
self.proj_out = nn.Linear(
|
| 465 |
+
self.inner_dim, patch_size * patch_size * self.out_channels, bias=True
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
self.gradient_checkpointing = False
|
| 469 |
+
# added for users to disable checkpointing every nth step
|
| 470 |
+
self.gradient_checkpointing_interval = None
|
| 471 |
+
|
| 472 |
+
def set_gradient_checkpointing_interval(self, value: int):
|
| 473 |
+
self.gradient_checkpointing_interval = value
|
| 474 |
+
|
| 475 |
+
@property
|
| 476 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors
|
| 477 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
| 478 |
+
r"""
|
| 479 |
+
Returns:
|
| 480 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
| 481 |
+
indexed by its weight name.
|
| 482 |
+
"""
|
| 483 |
+
# set recursively
|
| 484 |
+
processors = {}
|
| 485 |
+
|
| 486 |
+
def fn_recursive_add_processors(
|
| 487 |
+
name: str,
|
| 488 |
+
module: torch.nn.Module,
|
| 489 |
+
processors: Dict[str, AttentionProcessor],
|
| 490 |
+
):
|
| 491 |
+
if hasattr(module, "get_processor"):
|
| 492 |
+
processors[f"{name}.processor"] = module.get_processor()
|
| 493 |
+
|
| 494 |
+
for sub_name, child in module.named_children():
|
| 495 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
| 496 |
+
|
| 497 |
+
return processors
|
| 498 |
+
|
| 499 |
+
for name, module in self.named_children():
|
| 500 |
+
fn_recursive_add_processors(name, module, processors)
|
| 501 |
+
|
| 502 |
+
return processors
|
| 503 |
+
|
| 504 |
+
# Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
| 505 |
+
def set_attn_processor(
|
| 506 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
| 507 |
+
):
|
| 508 |
+
r"""
|
| 509 |
+
Sets the attention processor to use to compute attention.
|
| 510 |
+
|
| 511 |
+
Parameters:
|
| 512 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
| 513 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
| 514 |
+
for **all** `Attention` layers.
|
| 515 |
+
|
| 516 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
| 517 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
| 518 |
+
|
| 519 |
+
"""
|
| 520 |
+
count = len(self.attn_processors.keys())
|
| 521 |
+
|
| 522 |
+
if isinstance(processor, dict) and len(processor) != count:
|
| 523 |
+
raise ValueError(
|
| 524 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
| 525 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
| 526 |
+
)
|
| 527 |
+
|
| 528 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
| 529 |
+
if hasattr(module, "set_processor"):
|
| 530 |
+
if not isinstance(processor, dict):
|
| 531 |
+
module.set_processor(processor)
|
| 532 |
+
else:
|
| 533 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
| 534 |
+
|
| 535 |
+
for sub_name, child in module.named_children():
|
| 536 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
| 537 |
+
|
| 538 |
+
for name, module in self.named_children():
|
| 539 |
+
fn_recursive_attn_processor(name, module, processor)
|
| 540 |
+
|
| 541 |
+
def forward(
|
| 542 |
+
self,
|
| 543 |
+
hidden_states: torch.Tensor,
|
| 544 |
+
encoder_hidden_states: torch.Tensor = None,
|
| 545 |
+
pooled_projections: torch.Tensor = None,
|
| 546 |
+
timestep: torch.LongTensor = None,
|
| 547 |
+
img_ids: torch.Tensor = None,
|
| 548 |
+
txt_ids: torch.Tensor = None,
|
| 549 |
+
guidance: torch.Tensor = None,
|
| 550 |
+
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 551 |
+
controlnet_block_samples=None,
|
| 552 |
+
controlnet_single_block_samples=None,
|
| 553 |
+
return_dict: bool = True,
|
| 554 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 555 |
+
controlnet_blocks_repeat: bool = False,
|
| 556 |
+
) -> Union[torch.FloatTensor, Transformer2DModelOutput]:
|
| 557 |
+
"""
|
| 558 |
+
The [`FluxTransformer2DModel`] forward method.
|
| 559 |
+
|
| 560 |
+
Args:
|
| 561 |
+
hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`):
|
| 562 |
+
Input `hidden_states`.
|
| 563 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`):
|
| 564 |
+
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
| 565 |
+
pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected
|
| 566 |
+
from the embeddings of input conditions.
|
| 567 |
+
timestep ( `torch.LongTensor`):
|
| 568 |
+
Used to indicate denoising step.
|
| 569 |
+
block_controlnet_hidden_states: (`list` of `torch.Tensor`):
|
| 570 |
+
A list of tensors that if specified are added to the residuals of transformer blocks.
|
| 571 |
+
joint_attention_kwargs (`dict`, *optional*):
|
| 572 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 573 |
+
`self.processor` in
|
| 574 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 575 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 576 |
+
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
| 577 |
+
tuple.
|
| 578 |
+
|
| 579 |
+
Returns:
|
| 580 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
| 581 |
+
`tuple` where the first element is the sample tensor.
|
| 582 |
+
"""
|
| 583 |
+
if joint_attention_kwargs is not None:
|
| 584 |
+
joint_attention_kwargs = joint_attention_kwargs.copy()
|
| 585 |
+
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
| 586 |
+
else:
|
| 587 |
+
lora_scale = 1.0
|
| 588 |
+
|
| 589 |
+
if USE_PEFT_BACKEND:
|
| 590 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
| 591 |
+
scale_lora_layers(self, lora_scale)
|
| 592 |
+
else:
|
| 593 |
+
if (
|
| 594 |
+
joint_attention_kwargs is not None
|
| 595 |
+
and joint_attention_kwargs.get("scale", None) is not None
|
| 596 |
+
):
|
| 597 |
+
logger.warning(
|
| 598 |
+
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
| 599 |
+
)
|
| 600 |
+
hidden_states = self.x_embedder(hidden_states)
|
| 601 |
+
|
| 602 |
+
timestep = timestep.to(hidden_states.dtype) * 1000
|
| 603 |
+
if guidance is not None:
|
| 604 |
+
guidance = guidance.to(hidden_states.dtype) * 1000
|
| 605 |
+
else:
|
| 606 |
+
guidance = None
|
| 607 |
+
|
| 608 |
+
#print( self.time_text_embed)
|
| 609 |
+
temb = (
|
| 610 |
+
self.time_text_embed(timestep,pooled_projections)
|
| 611 |
+
# Edit 1 # Charlie NOT NEEDED - UNDONE
|
| 612 |
+
if guidance is None
|
| 613 |
+
else self.time_text_embed(timestep, guidance, pooled_projections)
|
| 614 |
+
)
|
| 615 |
+
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
| 616 |
+
|
| 617 |
+
if txt_ids.ndim == 3:
|
| 618 |
+
txt_ids = txt_ids[0]
|
| 619 |
+
if img_ids.ndim == 3:
|
| 620 |
+
img_ids = img_ids[0]
|
| 621 |
+
|
| 622 |
+
ids = torch.cat((txt_ids, img_ids), dim=0)
|
| 623 |
+
|
| 624 |
+
image_rotary_emb = self.pos_embed(ids)
|
| 625 |
+
|
| 626 |
+
# IP adapter
|
| 627 |
+
if (
|
| 628 |
+
joint_attention_kwargs is not None
|
| 629 |
+
and "ip_adapter_image_embeds" in joint_attention_kwargs
|
| 630 |
+
):
|
| 631 |
+
ip_adapter_image_embeds = joint_attention_kwargs.pop(
|
| 632 |
+
"ip_adapter_image_embeds"
|
| 633 |
+
)
|
| 634 |
+
ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds)
|
| 635 |
+
joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states})
|
| 636 |
+
|
| 637 |
+
for index_block, block in enumerate(self.transformer_blocks):
|
| 638 |
+
if (
|
| 639 |
+
self.training
|
| 640 |
+
and self.gradient_checkpointing
|
| 641 |
+
and (
|
| 642 |
+
self.gradient_checkpointing_interval is None
|
| 643 |
+
or index_block % self.gradient_checkpointing_interval == 0
|
| 644 |
+
)
|
| 645 |
+
):
|
| 646 |
+
|
| 647 |
+
def create_custom_forward(module, return_dict=None):
|
| 648 |
+
def custom_forward(*inputs):
|
| 649 |
+
if return_dict is not None:
|
| 650 |
+
return module(*inputs, return_dict=return_dict)
|
| 651 |
+
else:
|
| 652 |
+
return module(*inputs)
|
| 653 |
+
|
| 654 |
+
return custom_forward
|
| 655 |
+
|
| 656 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 657 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 658 |
+
)
|
| 659 |
+
encoder_hidden_states, hidden_states = (
|
| 660 |
+
torch.utils.checkpoint.checkpoint(
|
| 661 |
+
create_custom_forward(block),
|
| 662 |
+
hidden_states,
|
| 663 |
+
encoder_hidden_states,
|
| 664 |
+
temb,
|
| 665 |
+
image_rotary_emb,
|
| 666 |
+
attention_mask,
|
| 667 |
+
**ckpt_kwargs,
|
| 668 |
+
)
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
else:
|
| 672 |
+
encoder_hidden_states, hidden_states = block(
|
| 673 |
+
hidden_states=hidden_states,
|
| 674 |
+
encoder_hidden_states=encoder_hidden_states,
|
| 675 |
+
temb=temb,
|
| 676 |
+
image_rotary_emb=image_rotary_emb,
|
| 677 |
+
attention_mask=attention_mask,
|
| 678 |
+
)
|
| 679 |
+
|
| 680 |
+
# controlnet residual
|
| 681 |
+
if controlnet_block_samples is not None:
|
| 682 |
+
interval_control = len(self.transformer_blocks) / len(
|
| 683 |
+
controlnet_block_samples
|
| 684 |
+
)
|
| 685 |
+
interval_control = int(np.ceil(interval_control))
|
| 686 |
+
# For Xlabs ControlNet.
|
| 687 |
+
if controlnet_blocks_repeat:
|
| 688 |
+
hidden_states = (
|
| 689 |
+
hidden_states
|
| 690 |
+
+ controlnet_block_samples[
|
| 691 |
+
index_block % len(controlnet_block_samples)
|
| 692 |
+
]
|
| 693 |
+
)
|
| 694 |
+
else:
|
| 695 |
+
hidden_states = (
|
| 696 |
+
hidden_states
|
| 697 |
+
+ controlnet_block_samples[index_block // interval_control]
|
| 698 |
+
)
|
| 699 |
+
|
| 700 |
+
# Flux places the text tokens in front of the image tokens in the
|
| 701 |
+
# sequence.
|
| 702 |
+
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
| 703 |
+
|
| 704 |
+
for index_block, block in enumerate(self.single_transformer_blocks):
|
| 705 |
+
if (
|
| 706 |
+
self.training
|
| 707 |
+
and self.gradient_checkpointing
|
| 708 |
+
or (
|
| 709 |
+
self.gradient_checkpointing_interval is not None
|
| 710 |
+
and index_block % self.gradient_checkpointing_interval == 0
|
| 711 |
+
)
|
| 712 |
+
):
|
| 713 |
+
|
| 714 |
+
def create_custom_forward(module, return_dict=None):
|
| 715 |
+
def custom_forward(*inputs):
|
| 716 |
+
if return_dict is not None:
|
| 717 |
+
return module(*inputs, return_dict=return_dict)
|
| 718 |
+
else:
|
| 719 |
+
return module(*inputs)
|
| 720 |
+
|
| 721 |
+
return custom_forward
|
| 722 |
+
|
| 723 |
+
ckpt_kwargs: Dict[str, Any] = (
|
| 724 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
| 725 |
+
)
|
| 726 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
| 727 |
+
create_custom_forward(block),
|
| 728 |
+
hidden_states,
|
| 729 |
+
temb,
|
| 730 |
+
image_rotary_emb,
|
| 731 |
+
attention_mask,
|
| 732 |
+
**ckpt_kwargs,
|
| 733 |
+
)
|
| 734 |
+
|
| 735 |
+
else:
|
| 736 |
+
hidden_states = block(
|
| 737 |
+
hidden_states=hidden_states,
|
| 738 |
+
temb=temb,
|
| 739 |
+
image_rotary_emb=image_rotary_emb,
|
| 740 |
+
attention_mask=attention_mask,
|
| 741 |
+
)
|
| 742 |
+
|
| 743 |
+
# controlnet residual
|
| 744 |
+
if controlnet_single_block_samples is not None:
|
| 745 |
+
interval_control = len(self.single_transformer_blocks) / len(
|
| 746 |
+
controlnet_single_block_samples
|
| 747 |
+
)
|
| 748 |
+
interval_control = int(np.ceil(interval_control))
|
| 749 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
| 750 |
+
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 751 |
+
+ controlnet_single_block_samples[index_block // interval_control]
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
| 755 |
+
|
| 756 |
+
hidden_states = self.norm_out(hidden_states, temb)
|
| 757 |
+
output = self.proj_out(hidden_states)
|
| 758 |
+
|
| 759 |
+
if USE_PEFT_BACKEND:
|
| 760 |
+
# remove `lora_scale` from each PEFT layer
|
| 761 |
+
unscale_lora_layers(self, lora_scale)
|
| 762 |
+
|
| 763 |
+
if not return_dict:
|
| 764 |
+
return (output,)
|
| 765 |
+
|
| 766 |
+
return Transformer2DModelOutput(sample=output)
|
vae/config.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_class_name": "AutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.30.0.dev0",
|
| 4 |
+
"act_fn": "silu",
|
| 5 |
+
"block_out_channels": [
|
| 6 |
+
128,
|
| 7 |
+
256,
|
| 8 |
+
512,
|
| 9 |
+
512
|
| 10 |
+
],
|
| 11 |
+
"down_block_types": [
|
| 12 |
+
"DownEncoderBlock2D",
|
| 13 |
+
"DownEncoderBlock2D",
|
| 14 |
+
"DownEncoderBlock2D",
|
| 15 |
+
"DownEncoderBlock2D"
|
| 16 |
+
],
|
| 17 |
+
"force_upcast": true,
|
| 18 |
+
"in_channels": 3,
|
| 19 |
+
"latent_channels": 16,
|
| 20 |
+
"latents_mean": null,
|
| 21 |
+
"latents_std": null,
|
| 22 |
+
"layers_per_block": 2,
|
| 23 |
+
"mid_block_add_attention": true,
|
| 24 |
+
"norm_num_groups": 32,
|
| 25 |
+
"out_channels": 3,
|
| 26 |
+
"sample_size": 1024,
|
| 27 |
+
"scaling_factor": 0.3611,
|
| 28 |
+
"shift_factor": 0.1159,
|
| 29 |
+
"up_block_types": [
|
| 30 |
+
"UpDecoderBlock2D",
|
| 31 |
+
"UpDecoderBlock2D",
|
| 32 |
+
"UpDecoderBlock2D",
|
| 33 |
+
"UpDecoderBlock2D"
|
| 34 |
+
],
|
| 35 |
+
"use_post_quant_conv": false,
|
| 36 |
+
"use_quant_conv": false
|
| 37 |
+
}
|
vae/diffusion_pytorch_model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f5b59a26851551b67ae1fe58d32e76486e1e812def4696a4bea97f16604d40a3
|
| 3 |
+
size 167666902
|