diff --git "a/backup_pipeline.py" "b/backup_pipeline.py" new file mode 100644--- /dev/null +++ "b/backup_pipeline.py" @@ -0,0 +1,2827 @@ +# Copyright 2024 Black Forest Labs, The HuggingFace Team and The InstantX Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# +# This was modied from the control net repo + + +import inspect +from typing import Any, Callable, Dict, List, Optional, Tuple, Union + +from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel + +import numpy as np +import torch +from transformers import ( + CLIPTextModel, + CLIPTokenizer, + T5EncoderModel, + T5TokenizerFast, +) + +from diffusers.image_processor import PipelineImageInput, VaeImageProcessor +from diffusers.loaders import FluxLoraLoaderMixin, FromSingleFileMixin +from diffusers.models.autoencoders import AutoencoderKL +### MERGEING THESE ### +# from src.models.transformer import FluxTransformer2DModel +# from src.models.controlnet_flux import FluxControlNetModel +############# + +########################################## +########### ATTENTION MERGE ############## +########################################## + +import torch +from torch import Tensor, FloatTensor +from torch.nn import functional as F +from einops import rearrange +from diffusers.models.attention_processor import Attention +from diffusers.models.embeddings import apply_rotary_emb + +#try: +# from flash_attn_interface import flash_attn_func, flash_attn_qkvpacked_func +#except: +# pass + + +"""def fa3_sdpa( + q, + k, + v, +): + # flash attention 3 sdpa drop-in replacement + q, k, v = [x.permute(0, 2, 1, 3) for x in [q, k, v]] + out = flash_attn_func(q, k, v)[0] + return out.permute(0, 2, 1, 3)""" + +""" +class FluxSingleAttnProcessor3_0: + r"" + Processor for implementing scaled dot-product attention (enabled by default if you're using PyTorch 2.0). + "" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn, + hidden_states: Tensor, + encoder_hidden_states: Tensor = None, + attention_mask: FloatTensor = None, + image_rotary_emb: Tensor = None, + ) -> Tensor: + input_ndim = hidden_states.ndim + + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view( + batch_size, channel, height * width + ).transpose(1, 2) + + batch_size, _, _ = ( + hidden_states.shape + if encoder_hidden_states is None + else encoder_hidden_states.shape + ) + + query = attn.to_q(hidden_states) + if encoder_hidden_states is None: + encoder_hidden_states = hidden_states + + key = attn.to_k(encoder_hidden_states) + value = attn.to_v(encoder_hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Apply RoPE if needed + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + + # the output of sdp = (batch, num_heads, seq_len, head_dim) + # TODO: add support for attn.scale when we move to Torch 2.1 + # hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = fa3_sdpa(query, key, value) + hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)") + + hidden_states = hidden_states.transpose(1, 2).reshape( + batch_size, -1, attn.heads * head_dim + ) + hidden_states = hidden_states.to(query.dtype) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + return hidden_states + + +class FluxAttnProcessor3_0: + """Attention processor used typically in processing the SD3-like self-attention projections.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "FluxAttnProcessor3_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn, + hidden_states: FloatTensor, + encoder_hidden_states: FloatTensor = None, + attention_mask: FloatTensor = None, + image_rotary_emb: Tensor = None, + ) -> FloatTensor: + input_ndim = hidden_states.ndim + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view( + batch_size, channel, height * width + ).transpose(1, 2) + context_input_ndim = encoder_hidden_states.ndim + if context_input_ndim == 4: + batch_size, channel, height, width = encoder_hidden_states.shape + encoder_hidden_states = encoder_hidden_states.view( + batch_size, channel, height * width + ).transpose(1, 2) + + batch_size = encoder_hidden_states.shape[0] + + # `sample` projections. + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # `context` projections. + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q( + encoder_hidden_states_query_proj + ) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k( + encoder_hidden_states_key_proj + ) + + # attention + query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) + + if image_rotary_emb is not None: + + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + + # hidden_states = F.scaled_dot_product_attention(query, key, value, dropout_p=0.0, is_causal=False) + hidden_states = fa3_sdpa(query, key, value) + hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)") + + hidden_states = hidden_states.transpose(1, 2).reshape( + batch_size, -1, attn.heads * head_dim + ) + hidden_states = hidden_states.to(query.dtype) + + encoder_hidden_states, hidden_states = ( + hidden_states[:, : encoder_hidden_states.shape[1]], + hidden_states[:, encoder_hidden_states.shape[1] :], + ) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + if context_input_ndim == 4: + encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + return hidden_states, encoder_hidden_states + + +class FluxFusedFlashAttnProcessor3(object): + """ + True fused QKV Flash Attention 3 processor for Flux models. + Keeps QKV tensors packed through the entire attention computation. + """ + + def __init__(self): + self.flash_attn_qkvpacked_func = None + try: + from flash_attn_interface import flash_attn_qkvpacked_func + + self.flash_attn_qkvpacked_func = flash_attn_qkvpacked_func + except ImportError: + raise ImportError( + "FluxFusedFlashAttnProcessor3 requires flash-attn library. " + "Please see this link for Hopper and Blackwell instructions: https://github.com/bghira/SimpleTuner/blob/main/INSTALL.md#nvidia-hopper--blackwell-follow-up-steps" + ) + + def __call__( + self, + attn, + hidden_states: FloatTensor, + encoder_hidden_states: FloatTensor = None, + attention_mask: FloatTensor = None, + image_rotary_emb: Tensor = None, + ) -> FloatTensor: + input_ndim = hidden_states.ndim + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view( + batch_size, channel, height * width + ).transpose(1, 2) + + context_input_ndim = ( + encoder_hidden_states.ndim if encoder_hidden_states is not None else None + ) + if context_input_ndim == 4: + batch_size, channel, height, width = encoder_hidden_states.shape + encoder_hidden_states = encoder_hidden_states.view( + batch_size, channel, height * width + ).transpose(1, 2) + + batch_size = ( + encoder_hidden_states.shape[0] + if encoder_hidden_states is not None + else hidden_states.shape[0] + ) + seq_len = hidden_states.shape[1] + + # Fused QKV projection + qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim) + inner_dim = qkv.shape[-1] // 3 + head_dim = inner_dim // attn.heads + + # Reshape to packed format: (batch, seq_len, 3, heads, head_dim) + qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim) + + # Apply norms if needed (requires temporary unpacking) + if attn.norm_q is not None or attn.norm_k is not None: + q, k, v = qkv.unbind(dim=2) # Each is (batch, seq_len, heads, head_dim) + q = q.transpose(1, 2) # (batch, heads, seq_len, head_dim) + k = k.transpose(1, 2) + v = v.transpose(1, 2) + + if attn.norm_q is not None: + q = attn.norm_q(q) + if attn.norm_k is not None: + k = attn.norm_k(k) + + # Repack: back to (batch, seq_len, 3, heads, head_dim) + qkv = torch.stack( + [q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)], dim=2 + ) + + # Handle encoder states if present + if encoder_hidden_states is not None: + encoder_seq_len = encoder_hidden_states.shape[1] + + # Fused encoder QKV + encoder_qkv = attn.to_added_qkv(encoder_hidden_states) + encoder_qkv = encoder_qkv.view( + batch_size, encoder_seq_len, 3, attn.heads, head_dim + ) + + # Apply norms if needed + if attn.norm_added_q is not None or attn.norm_added_k is not None: + enc_q, enc_k, enc_v = encoder_qkv.unbind(dim=2) + enc_q = enc_q.transpose(1, 2) + enc_k = enc_k.transpose(1, 2) + enc_v = enc_v.transpose(1, 2) + + if attn.norm_added_q is not None: + enc_q = attn.norm_added_q(enc_q) + if attn.norm_added_k is not None: + enc_k = attn.norm_added_k(enc_k) + + encoder_qkv = torch.stack( + [ + enc_q.transpose(1, 2), + enc_k.transpose(1, 2), + enc_v.transpose(1, 2), + ], + dim=2, + ) + + # Concatenate along sequence dimension + qkv = torch.cat( + [encoder_qkv, qkv], dim=1 + ) # (batch, encoder_seq + seq, 3, heads, head_dim) + + # Apply RoPE if needed + if image_rotary_emb is not None: + q, k, v = qkv.unbind(dim=2) # Each is (batch, seq_len, heads, head_dim) + + # Transpose to (batch, heads, seq_len, head_dim) for RoPE + q = q.transpose(1, 2) + k = k.transpose(1, 2) + v = v.transpose(1, 2) + + # Apply RoPE to q and k + q = apply_rotary_emb(q, image_rotary_emb) + k = apply_rotary_emb(k, image_rotary_emb) + + # Transpose back and repack + qkv = torch.stack( + [q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2)], dim=2 + ) + + # Flash Attention 3 with packed QKV + # Input shape: (batch, seq_len, 3, heads, head_dim) + # Output shape: (batch, seq_len, heads, head_dim) + hidden_states = self.flash_attn_qkvpacked_func( + qkv, + causal=False, + # Don't pass num_heads_q for standard MHA + ) + + # Reshape output: (batch, seq_len, heads, head_dim) -> (batch, seq_len, heads * head_dim) + hidden_states = hidden_states.reshape(batch_size, -1, attn.heads * head_dim) + hidden_states = hidden_states.to(qkv.dtype) + + # Split and process outputs + if encoder_hidden_states is not None: + encoder_seq_len = encoder_hidden_states.shape[1] + encoder_hidden_states = hidden_states[:, :encoder_seq_len] + hidden_states = hidden_states[:, encoder_seq_len:] + + # Output projections + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) # dropout + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + # Reshape if needed + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + if context_input_ndim == 4: + encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + return hidden_states, encoder_hidden_states + else: + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + return hidden_states +""" + +class FluxFusedSDPAProcessor: + """ + Fused QKV processor using PyTorch's scaled_dot_product_attention. + Uses fused projections but splits for attention computation. + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "FluxFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention" + ) + + def __call__( + self, + attn, + hidden_states: FloatTensor, + encoder_hidden_states: FloatTensor = None, + attention_mask: FloatTensor = None, + image_rotary_emb: Tensor = None, + ) -> FloatTensor: + input_ndim = hidden_states.ndim + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view( + batch_size, channel, height * width + ).transpose(1, 2) + + context_input_ndim = ( + encoder_hidden_states.ndim if encoder_hidden_states is not None else None + ) + if context_input_ndim == 4: + batch_size, channel, height, width = encoder_hidden_states.shape + encoder_hidden_states = encoder_hidden_states.view( + batch_size, channel, height * width + ).transpose(1, 2) + + batch_size = ( + encoder_hidden_states.shape[0] + if encoder_hidden_states is not None + else hidden_states.shape[0] + ) + + # Single attention case (no encoder states) + if encoder_hidden_states is None: + # Use fused QKV projection + qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim) + inner_dim = qkv.shape[-1] // 3 + head_dim = inner_dim // attn.heads + seq_len = hidden_states.shape[1] + + # Split and reshape + qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim) + query, key, value = qkv.unbind( + dim=2 + ) # Each is (batch, seq_len, heads, head_dim) + + # Transpose to (batch, heads, seq_len, head_dim) + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + + # Apply norms if needed + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Apply RoPE if needed + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + + # SDPA + hidden_states = F.scaled_dot_product_attention( + query, + key, + value, + attn_mask=attention_mask, + dropout_p=0.0, + is_causal=False, + ) + + # Reshape back + hidden_states = hidden_states.transpose(1, 2).reshape( + batch_size, -1, attn.heads * head_dim + ) + hidden_states = hidden_states.to(query.dtype) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + return hidden_states + + # Joint attention case (with encoder states) + else: + # Process self-attention QKV + qkv = attn.to_qkv(hidden_states) + inner_dim = qkv.shape[-1] // 3 + head_dim = inner_dim // attn.heads + seq_len = hidden_states.shape[1] + + qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim) + query, key, value = qkv.unbind(dim=2) + + # Transpose to (batch, heads, seq_len, head_dim) + query = query.transpose(1, 2) + key = key.transpose(1, 2) + value = value.transpose(1, 2) + + # Apply norms if needed + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Process encoder QKV + encoder_seq_len = encoder_hidden_states.shape[1] + encoder_qkv = attn.to_added_qkv(encoder_hidden_states) + encoder_qkv = encoder_qkv.view( + batch_size, encoder_seq_len, 3, attn.heads, head_dim + ) + encoder_query, encoder_key, encoder_value = encoder_qkv.unbind(dim=2) + + # Transpose to (batch, heads, seq_len, head_dim) + encoder_query = encoder_query.transpose(1, 2) + encoder_key = encoder_key.transpose(1, 2) + encoder_value = encoder_value.transpose(1, 2) + + # Apply encoder norms if needed + if attn.norm_added_q is not None: + encoder_query = attn.norm_added_q(encoder_query) + if attn.norm_added_k is not None: + encoder_key = attn.norm_added_k(encoder_key) + + # Concatenate encoder and self-attention + query = torch.cat([encoder_query, query], dim=2) + key = torch.cat([encoder_key, key], dim=2) + value = torch.cat([encoder_value, value], dim=2) + + # Apply RoPE if needed + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + + # SDPA + hidden_states = F.scaled_dot_product_attention( + query, + key, + value, + attn_mask=attention_mask, + dropout_p=0.0, + is_causal=False, + ) + + # Reshape: (batch, heads, seq_len, head_dim) -> (batch, seq_len, heads * head_dim) + hidden_states = hidden_states.transpose(1, 2).reshape( + batch_size, -1, attn.heads * head_dim + ) + hidden_states = hidden_states.to(query.dtype) + + # Split encoder and self outputs + encoder_hidden_states = hidden_states[:, :encoder_seq_len] + hidden_states = hidden_states[:, encoder_seq_len:] + + # Output projections + hidden_states = attn.to_out[0](hidden_states) + hidden_states = attn.to_out[1](hidden_states) # dropout + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + # Reshape if needed + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + if context_input_ndim == 4: + encoder_hidden_states = encoder_hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + return hidden_states, encoder_hidden_states + + +class FluxSingleFusedSDPAProcessor: + """ + Fused QKV processor for single attention (no encoder states). + Simpler version for self-attention only blocks. + """ + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "FluxSingleFusedSDPAProcessor requires PyTorch 2.0+ for scaled_dot_product_attention" + ) + + def __call__( + self, + attn, + hidden_states: Tensor, + encoder_hidden_states: Tensor = None, + attention_mask: FloatTensor = None, + image_rotary_emb: Tensor = None, + ) -> Tensor: + input_ndim = hidden_states.ndim + if input_ndim == 4: + batch_size, channel, height, width = hidden_states.shape + hidden_states = hidden_states.view( + batch_size, channel, height * width + ).transpose(1, 2) + + batch_size, seq_len, _ = hidden_states.shape + + # Use fused QKV projection + qkv = attn.to_qkv(hidden_states) # (batch, seq_len, 3 * inner_dim) + inner_dim = qkv.shape[-1] // 3 + head_dim = inner_dim // attn.heads + + # Split and reshape in one go + qkv = qkv.view(batch_size, seq_len, 3, attn.heads, head_dim) + qkv = qkv.permute(2, 0, 3, 1, 4) # (3, B, H, L, D) – still strided + query, key, value = [ + t.contiguous() for t in qkv.unbind(0) # make each view dense + ] + # Now each is (batch, heads, seq_len, head_dim) + + # Apply norms if needed + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # Apply RoPE if needed + if image_rotary_emb is not None: + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + + # SDPA + hidden_states = F.scaled_dot_product_attention( + query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False + ) + + # Reshape back + hidden_states = rearrange(hidden_states, "B H L D -> B L (H D)") + hidden_states = hidden_states.to(query.dtype) + + if input_ndim == 4: + hidden_states = hidden_states.transpose(-1, -2).reshape( + batch_size, channel, height, width + ) + + return hidden_states + +################################# +##### TRANSFORMER MERGE ######### +################################# + +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +import torch.nn as nn +import torch.nn.functional as F +import numpy as np + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin +from diffusers.models.attention import FeedForward +from diffusers.models.attention_processor import ( + Attention, + AttentionProcessor, +) +from diffusers.models.modeling_utils import ModelMixin +from diffusers.models.normalization import ( + AdaLayerNormContinuous, + AdaLayerNormZero, + AdaLayerNormZeroSingle, +) +from diffusers.utils import ( + USE_PEFT_BACKEND, + is_torch_version, + logging, + scale_lora_layers, + unscale_lora_layers, +) +from diffusers.utils.torch_utils import maybe_allow_in_graph +from diffusers.models.embeddings import ( + CombinedTimestepGuidanceTextProjEmbeddings, + CombinedTimestepTextProjEmbeddings, + FluxPosEmbed, +) + +from diffusers.models.modeling_outputs import Transformer2DModelOutput +from diffusers import FluxTransformer2DModel as OriginalFluxTransformer2DModel + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +is_flash_attn_available = False +"""try: + from flash_attn_interface import flash_attn_func + + is_flash_attn_available = True +except: + pass""" + + +class FluxAttnProcessor2_0: + """Attention processor used typically in processing the SD3-like self-attention projections.""" + + def __init__(self): + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError( + "FluxAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0." + ) + + def __call__( + self, + attn: Attention, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor = None, + attention_mask: Optional[torch.FloatTensor] = None, + image_rotary_emb: Optional[torch.Tensor] = None, + ) -> torch.FloatTensor: + batch_size, _, _ = ( + hidden_states.shape + if encoder_hidden_states is None + else encoder_hidden_states.shape + ) + + # `sample` projections. + query = attn.to_q(hidden_states) + key = attn.to_k(hidden_states) + value = attn.to_v(hidden_states) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + if attn.norm_q is not None: + query = attn.norm_q(query) + if attn.norm_k is not None: + key = attn.norm_k(key) + + # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` + if encoder_hidden_states is not None: + # `context` projections. + encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states) + encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states) + encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states) + + encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( + batch_size, -1, attn.heads, head_dim + ).transpose(1, 2) + + if attn.norm_added_q is not None: + encoder_hidden_states_query_proj = attn.norm_added_q( + encoder_hidden_states_query_proj + ) + if attn.norm_added_k is not None: + encoder_hidden_states_key_proj = attn.norm_added_k( + encoder_hidden_states_key_proj + ) + + # attention + query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) + key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) + value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) + + if image_rotary_emb is not None: + from diffusers.models.embeddings import apply_rotary_emb + + query = apply_rotary_emb(query, image_rotary_emb) + key = apply_rotary_emb(key, image_rotary_emb) + + if attention_mask is not None: + #print ('Attention Used') + attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) + attention_mask = (attention_mask > 0).bool() + # Edit 17 - match attn dtype to query d-type + attention_mask = attention_mask.to( + device=hidden_states.device, dtype=query.dtype + ) + + hidden_states = F.scaled_dot_product_attention( + query, + key, + value, + dropout_p=0.0, + is_causal=False, + attn_mask=attention_mask, + ) + hidden_states = hidden_states.transpose(1, 2).reshape( + batch_size, -1, attn.heads * head_dim + ) + hidden_states = hidden_states.to(query.dtype) + + if encoder_hidden_states is not None: + encoder_hidden_states, hidden_states = ( + hidden_states[:, : encoder_hidden_states.shape[1]], + hidden_states[:, encoder_hidden_states.shape[1] :], + ) + + # linear proj + hidden_states = attn.to_out[0](hidden_states) + # dropout + hidden_states = attn.to_out[1](hidden_states) + encoder_hidden_states = attn.to_add_out(encoder_hidden_states) + + return hidden_states, encoder_hidden_states + return hidden_states + + +def expand_flux_attention_mask( + hidden_states: torch.Tensor, + attn_mask: torch.Tensor, +) -> torch.Tensor: + """ + Expand a mask so that the image is included. + """ + bsz = attn_mask.shape[0] + assert bsz == hidden_states.shape[0] + residual_seq_len = hidden_states.shape[1] + mask_seq_len = attn_mask.shape[1] + + expanded_mask = torch.ones(bsz, residual_seq_len) + expanded_mask[:, :mask_seq_len] = attn_mask + + return expanded_mask + + +@maybe_allow_in_graph +class FluxSingleTransformerBlock(nn.Module): + r""" + A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. + + Reference: https://arxiv.org/abs/2403.03206 + + Parameters: + dim (`int`): The number of channels in the input and output. + num_attention_heads (`int`): The number of heads to use for multi-head attention. + attention_head_dim (`int`): The number of channels in each head. + context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the + processing of `context` conditions. + """ + + def __init__(self, dim, num_attention_heads, attention_head_dim, mlp_ratio=4.0): + super().__init__() + self.mlp_hidden_dim = int(dim * mlp_ratio) + + self.norm = AdaLayerNormZeroSingle(dim) + self.proj_mlp = nn.Linear(dim, self.mlp_hidden_dim) + self.act_mlp = nn.GELU(approximate="tanh") + self.proj_out = nn.Linear(dim + self.mlp_hidden_dim, dim) + + processor = FluxAttnProcessor2_0() + self.attn = Attention( + query_dim=dim, + cross_attention_dim=None, + dim_head=attention_head_dim, + heads=num_attention_heads, + out_dim=dim, + bias=True, + processor=processor, + qk_norm="rms_norm", + eps=1e-6, + pre_only=True, + ) + + def forward( + self, + hidden_states: torch.FloatTensor, + temb: torch.FloatTensor, + image_rotary_emb=None, + attention_mask: Optional[torch.Tensor] = None, + ): + residual = hidden_states + norm_hidden_states, gate = self.norm(hidden_states, emb=temb) + mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states)) + + if attention_mask is not None: + attention_mask = expand_flux_attention_mask( + hidden_states, + attention_mask, + ) + + attn_output = self.attn( + hidden_states=norm_hidden_states, + image_rotary_emb=image_rotary_emb, + attention_mask=attention_mask, + ) + + hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2) + gate = gate.unsqueeze(1) + hidden_states = gate * self.proj_out(hidden_states) + hidden_states = residual + hidden_states + + if hidden_states.dtype == torch.float16: + hidden_states = hidden_states.clip(-65504, 65504) + + return hidden_states + + +@maybe_allow_in_graph +class FluxTransformerBlock(nn.Module): + r""" + A Transformer block following the MMDiT architecture, introduced in Stable Diffusion 3. + + Reference: https://arxiv.org/abs/2403.03206 + + Parameters: + dim (`int`): The number of channels in the input and output. + num_attention_heads (`int`): The number of heads to use for multi-head attention. + attention_head_dim (`int`): The number of channels in each head. + context_pre_only (`bool`): Boolean to determine if we should add some blocks associated with the + processing of `context` conditions. + """ + + def __init__( + self, dim, num_attention_heads, attention_head_dim, qk_norm="rms_norm", eps=1e-6 + ): + super().__init__() + + self.norm1 = AdaLayerNormZero(dim) + + self.norm1_context = AdaLayerNormZero(dim) + + if hasattr(F, "scaled_dot_product_attention"): + processor = FluxAttnProcessor2_0() + else: + raise ValueError( + "The current PyTorch version does not support the `scaled_dot_product_attention` function." + ) + self.attn = Attention( + query_dim=dim, + cross_attention_dim=None, + added_kv_proj_dim=dim, + dim_head=attention_head_dim, + heads=num_attention_heads, + out_dim=dim, + context_pre_only=False, + bias=True, + processor=processor, + qk_norm=qk_norm, + eps=eps, + ) + + self.norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) + self.ff = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate") + + self.norm2_context = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) + self.ff_context = FeedForward( + dim=dim, dim_out=dim, activation_fn="gelu-approximate" + ) + + # let chunk size default to None + self._chunk_size = None + self._chunk_dim = 0 + + def forward( + self, + hidden_states: torch.FloatTensor, + encoder_hidden_states: torch.FloatTensor, + temb: torch.FloatTensor, + image_rotary_emb=None, + attention_mask: Optional[torch.Tensor] = None, + ): + norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( + hidden_states, emb=temb + ) + + norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = ( + self.norm1_context(encoder_hidden_states, emb=temb) + ) + + if attention_mask is not None: + attention_mask = expand_flux_attention_mask( + torch.cat([encoder_hidden_states, hidden_states], dim=1), + attention_mask, + ) + + # Attention. + attention_outputs = self.attn( + hidden_states=norm_hidden_states, + encoder_hidden_states=norm_encoder_hidden_states, + image_rotary_emb=image_rotary_emb, + attention_mask=attention_mask, + ) + if len(attention_outputs) == 2: + attn_output, context_attn_output = attention_outputs + elif len(attention_outputs) == 3: + attn_output, context_attn_output, ip_attn_output = attention_outputs + + # Process attention outputs for the `hidden_states`. + attn_output = gate_msa.unsqueeze(1) * attn_output + hidden_states = hidden_states + attn_output + + norm_hidden_states = self.norm2(hidden_states) + norm_hidden_states = ( + norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] + ) + + ff_output = self.ff(norm_hidden_states) + ff_output = gate_mlp.unsqueeze(1) * ff_output + + hidden_states = hidden_states + ff_output + if len(attention_outputs) == 3: + hidden_states = hidden_states + ip_attn_output + + # Process attention outputs for the `encoder_hidden_states`. + context_attn_output = c_gate_msa.unsqueeze(1) * context_attn_output + encoder_hidden_states = encoder_hidden_states + context_attn_output + + norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states) + norm_encoder_hidden_states = ( + norm_encoder_hidden_states * (1 + c_scale_mlp[:, None]) + + c_shift_mlp[:, None] + ) + + context_ff_output = self.ff_context(norm_encoder_hidden_states) + encoder_hidden_states = ( + encoder_hidden_states + c_gate_mlp.unsqueeze(1) * context_ff_output + ) + + if encoder_hidden_states.dtype == torch.float16: + encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504) + + return encoder_hidden_states, hidden_states + + +class LibreFluxTransformer2DModel( + ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin +): + """ + The Transformer model introduced in Flux. + + Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ + + Parameters: + patch_size (`int`): Patch size to turn the input data into small patches. + in_channels (`int`, *optional*, defaults to 16): The number of channels in the input. + num_layers (`int`, *optional*, defaults to 18): The number of layers of MMDiT blocks to use. + num_single_layers (`int`, *optional*, defaults to 18): The number of layers of single DiT blocks to use. + attention_head_dim (`int`, *optional*, defaults to 64): The number of channels in each head. + num_attention_heads (`int`, *optional*, defaults to 18): The number of heads to use for multi-head attention. + joint_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use. + pooled_projection_dim (`int`): Number of dimensions to use when projecting the `pooled_projections`. + guidance_embeds (`bool`, defaults to False): Whether to use guidance embeddings. + """ + + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + patch_size: int = 1, + in_channels: int = 64, + num_layers: int = 19, + num_single_layers: int = 38, + attention_head_dim: int = 128, + num_attention_heads: int = 24, + joint_attention_dim: int = 4096, + pooled_projection_dim: int = 768, + guidance_embeds: bool = False, + axes_dims_rope: Tuple[int] = (16, 56, 56), + ): + super().__init__() + self.out_channels = in_channels + self.inner_dim = ( + self.config.num_attention_heads * self.config.attention_head_dim + ) + + self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) + text_time_guidance_cls = ( + CombinedTimestepGuidanceTextProjEmbeddings ### 3 input forward (timestep, guidance, pooled_projection) + if guidance_embeds + else CombinedTimestepTextProjEmbeddings #### 2 input forward (timestep, pooled_projection) + ) + self.time_text_embed = text_time_guidance_cls( + embedding_dim=self.inner_dim, + pooled_projection_dim=self.config.pooled_projection_dim, + ) + + self.context_embedder = nn.Linear( + self.config.joint_attention_dim, self.inner_dim + ) + self.x_embedder = torch.nn.Linear(self.config.in_channels, self.inner_dim) + + self.transformer_blocks = nn.ModuleList( + [ + FluxTransformerBlock( + dim=self.inner_dim, + num_attention_heads=self.config.num_attention_heads, + attention_head_dim=self.config.attention_head_dim, + ) + for i in range(self.config.num_layers) + ] + ) + + self.single_transformer_blocks = nn.ModuleList( + [ + FluxSingleTransformerBlock( + dim=self.inner_dim, + num_attention_heads=self.config.num_attention_heads, + attention_head_dim=self.config.attention_head_dim, + ) + for i in range(self.config.num_single_layers) + ] + ) + + self.norm_out = AdaLayerNormContinuous( + self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6 + ) + self.proj_out = nn.Linear( + self.inner_dim, patch_size * patch_size * self.out_channels, bias=True + ) + + self.gradient_checkpointing = False + # added for users to disable checkpointing every nth step + self.gradient_checkpointing_interval = None + + def set_gradient_checkpointing_interval(self, value: int): + self.gradient_checkpointing_interval = value + + @property + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors + def attn_processors(self) -> Dict[str, AttentionProcessor]: + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors( + name: str, + module: torch.nn.Module, + processors: Dict[str, AttentionProcessor], + ): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor() + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor + def set_attn_processor( + self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]] + ): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def forward( + self, + hidden_states: torch.Tensor, + encoder_hidden_states: torch.Tensor = None, + pooled_projections: torch.Tensor = None, + timestep: torch.LongTensor = None, + img_ids: torch.Tensor = None, + txt_ids: torch.Tensor = None, + guidance: torch.Tensor = None, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + controlnet_block_samples=None, + controlnet_single_block_samples=None, + return_dict: bool = True, + attention_mask: Optional[torch.Tensor] = None, + controlnet_blocks_repeat: bool = False, + ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: + """ + The [`FluxTransformer2DModel`] forward method. + + Args: + hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): + Input `hidden_states`. + encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): + Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. + pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected + from the embeddings of input conditions. + timestep ( `torch.LongTensor`): + Used to indicate denoising step. + block_controlnet_hidden_states: (`list` of `torch.Tensor`): + A list of tensors that if specified are added to the residuals of transformer blocks. + joint_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain + tuple. + + Returns: + If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a + `tuple` where the first element is the sample tensor. + """ + if joint_attention_kwargs is not None: + joint_attention_kwargs = joint_attention_kwargs.copy() + lora_scale = joint_attention_kwargs.pop("scale", 1.0) + else: + lora_scale = 1.0 + + if USE_PEFT_BACKEND: + # weight the lora layers by setting `lora_scale` for each PEFT layer + scale_lora_layers(self, lora_scale) + else: + if ( + joint_attention_kwargs is not None + and joint_attention_kwargs.get("scale", None) is not None + ): + logger.warning( + "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." + ) + hidden_states = self.x_embedder(hidden_states) + + timestep = timestep.to(hidden_states.dtype) * 1000 + if guidance is not None: + guidance = guidance.to(hidden_states.dtype) * 1000 + else: + guidance = None + + #print( self.time_text_embed) + temb = ( + self.time_text_embed(timestep,pooled_projections) + # Edit 1 # Charlie NOT NEEDED - UNDONE + if guidance is None + else self.time_text_embed(timestep, guidance, pooled_projections) + ) + encoder_hidden_states = self.context_embedder(encoder_hidden_states) + + if txt_ids.ndim == 3: + txt_ids = txt_ids[0] + if img_ids.ndim == 3: + img_ids = img_ids[0] + + ids = torch.cat((txt_ids, img_ids), dim=0) + + image_rotary_emb = self.pos_embed(ids) + + # IP adapter + if ( + joint_attention_kwargs is not None + and "ip_adapter_image_embeds" in joint_attention_kwargs + ): + ip_adapter_image_embeds = joint_attention_kwargs.pop( + "ip_adapter_image_embeds" + ) + ip_hidden_states = self.encoder_hid_proj(ip_adapter_image_embeds) + joint_attention_kwargs.update({"ip_hidden_states": ip_hidden_states}) + + for index_block, block in enumerate(self.transformer_blocks): + if ( + self.training + and self.gradient_checkpointing + and ( + self.gradient_checkpointing_interval is None + or index_block % self.gradient_checkpointing_interval == 0 + ) + ): + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = ( + {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + ) + encoder_hidden_states, hidden_states = ( + torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + encoder_hidden_states, + temb, + image_rotary_emb, + attention_mask, + **ckpt_kwargs, + ) + ) + + else: + encoder_hidden_states, hidden_states = block( + hidden_states=hidden_states, + encoder_hidden_states=encoder_hidden_states, + temb=temb, + image_rotary_emb=image_rotary_emb, + attention_mask=attention_mask, + ) + + # controlnet residual + if controlnet_block_samples is not None: + interval_control = len(self.transformer_blocks) / len( + controlnet_block_samples + ) + interval_control = int(np.ceil(interval_control)) + # For Xlabs ControlNet. + if controlnet_blocks_repeat: + hidden_states = ( + hidden_states + + controlnet_block_samples[ + index_block % len(controlnet_block_samples) + ] + ) + else: + hidden_states = ( + hidden_states + + controlnet_block_samples[index_block // interval_control] + ) + + # Flux places the text tokens in front of the image tokens in the + # sequence. + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + + for index_block, block in enumerate(self.single_transformer_blocks): + if ( + self.training + and self.gradient_checkpointing + or ( + self.gradient_checkpointing_interval is not None + and index_block % self.gradient_checkpointing_interval == 0 + ) + ): + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = ( + {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + ) + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + temb, + image_rotary_emb, + attention_mask, + **ckpt_kwargs, + ) + + else: + hidden_states = block( + hidden_states=hidden_states, + temb=temb, + image_rotary_emb=image_rotary_emb, + attention_mask=attention_mask, + ) + + # controlnet residual + if controlnet_single_block_samples is not None: + interval_control = len(self.single_transformer_blocks) / len( + controlnet_single_block_samples + ) + interval_control = int(np.ceil(interval_control)) + hidden_states[:, encoder_hidden_states.shape[1] :, ...] = ( + hidden_states[:, encoder_hidden_states.shape[1] :, ...] + + controlnet_single_block_samples[index_block // interval_control] + ) + + hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...] + + hidden_states = self.norm_out(hidden_states, temb) + output = self.proj_out(hidden_states) + + if USE_PEFT_BACKEND: + # remove `lora_scale` from each PEFT layer + unscale_lora_layers(self, lora_scale) + + if not return_dict: + return (output,) + + return Transformer2DModelOutput(sample=output) + +#################################### +##### CONTROL NET MODEL MERGE ###### +#################################### + + +from dataclasses import dataclass +from typing import Any, Dict, List, Optional, Tuple, Union + +import torch +import torch.nn as nn + +from diffusers.configuration_utils import ConfigMixin, register_to_config +from diffusers.loaders import PeftAdapterMixin +from diffusers.models.attention_processor import AttentionProcessor +from diffusers.models.modeling_utils import ModelMixin +from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, is_torch_version, logging, scale_lora_layers, unscale_lora_layers +from diffusers.models.controlnets.controlnet import ControlNetConditioningEmbedding, zero_module +from diffusers.models.embeddings import CombinedTimestepGuidanceTextProjEmbeddings, CombinedTimestepTextProjEmbeddings, FluxPosEmbed +from diffusers.models.modeling_outputs import Transformer2DModelOutput + + +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + + +@dataclass +class FluxControlNetOutput(BaseOutput): + controlnet_block_samples: Tuple[torch.Tensor] + controlnet_single_block_samples: Tuple[torch.Tensor] + + +class LibreFluxControlNetModel(ModelMixin, ConfigMixin, PeftAdapterMixin): + _supports_gradient_checkpointing = True + + @register_to_config + def __init__( + self, + patch_size: int = 1, + in_channels: int = 64, + num_layers: int = 19, + num_single_layers: int = 38, + attention_head_dim: int = 128, + num_attention_heads: int = 24, + joint_attention_dim: int = 4096, + pooled_projection_dim: int = 768, + guidance_embeds: bool = False, + axes_dims_rope: List[int] = [16, 56, 56], + num_mode: int = None, + conditioning_embedding_channels: int = None, + ): + super().__init__() + self.out_channels = in_channels + self.inner_dim = num_attention_heads * attention_head_dim + + self.pos_embed = FluxPosEmbed(theta=10000, axes_dim=axes_dims_rope) + + # edit 19 + #text_time_guidance_cls = ( + # CombinedTimestepGuidanceTextProjEmbeddings if guidance_embeds else CombinedTimestepTextProjEmbeddings + #) + + text_time_guidance_cls = CombinedTimestepGuidanceTextProjEmbeddings + text_time_cls = CombinedTimestepTextProjEmbeddings + + self.time_text_embed = text_time_cls( + embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim + ) + self.time_text_guidance_embed = text_time_guidance_cls( + embedding_dim=self.inner_dim, pooled_projection_dim=pooled_projection_dim + ) + + self.context_embedder = nn.Linear(joint_attention_dim, self.inner_dim) + self.x_embedder = torch.nn.Linear(in_channels, self.inner_dim) + + self.transformer_blocks = nn.ModuleList( + [ + FluxTransformerBlock( + dim=self.inner_dim, + num_attention_heads=num_attention_heads, + attention_head_dim=attention_head_dim, + ) + for i in range(num_layers) + ] + ) + + self.single_transformer_blocks = nn.ModuleList( + [ + FluxSingleTransformerBlock( + dim=self.inner_dim, + num_attention_heads=num_attention_heads, + attention_head_dim=attention_head_dim, + ) + for i in range(num_single_layers) + ] + ) + + # controlnet_blocks + self.controlnet_blocks = nn.ModuleList([]) + for _ in range(len(self.transformer_blocks)): + self.controlnet_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim))) + + self.controlnet_single_blocks = nn.ModuleList([]) + for _ in range(len(self.single_transformer_blocks)): + self.controlnet_single_blocks.append(zero_module(nn.Linear(self.inner_dim, self.inner_dim))) + + self.union = num_mode is not None + if self.union: + self.controlnet_mode_embedder = nn.Embedding(num_mode, self.inner_dim) + + if conditioning_embedding_channels is not None: + self.input_hint_block = ControlNetConditioningEmbedding( + conditioning_embedding_channels=conditioning_embedding_channels, block_out_channels=(16, 16, 16, 16) + ) + self.controlnet_x_embedder = torch.nn.Linear(in_channels, self.inner_dim) + else: + self.input_hint_block = None + self.controlnet_x_embedder = zero_module(torch.nn.Linear(in_channels, self.inner_dim)) + + self.gradient_checkpointing = False + + @property + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.attn_processors + def attn_processors(self): + r""" + Returns: + `dict` of attention processors: A dictionary containing all attention processors used in the model with + indexed by its weight name. + """ + # set recursively + processors = {} + + def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]): + if hasattr(module, "get_processor"): + processors[f"{name}.processor"] = module.get_processor() + + for sub_name, child in module.named_children(): + fn_recursive_add_processors(f"{name}.{sub_name}", child, processors) + + return processors + + for name, module in self.named_children(): + fn_recursive_add_processors(name, module, processors) + + return processors + + # Copied from diffusers.models.unets.unet_2d_condition.UNet2DConditionModel.set_attn_processor + def set_attn_processor(self, processor): + r""" + Sets the attention processor to use to compute attention. + + Parameters: + processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`): + The instantiated processor class or a dictionary of processor classes that will be set as the processor + for **all** `Attention` layers. + + If `processor` is a dict, the key needs to define the path to the corresponding cross attention + processor. This is strongly recommended when setting trainable attention processors. + + """ + count = len(self.attn_processors.keys()) + + if isinstance(processor, dict) and len(processor) != count: + raise ValueError( + f"A dict of processors was passed, but the number of processors {len(processor)} does not match the" + f" number of attention layers: {count}. Please make sure to pass {count} processor classes." + ) + + def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor): + if hasattr(module, "set_processor"): + if not isinstance(processor, dict): + module.set_processor(processor) + else: + module.set_processor(processor.pop(f"{name}.processor")) + + for sub_name, child in module.named_children(): + fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor) + + for name, module in self.named_children(): + fn_recursive_attn_processor(name, module, processor) + + def _set_gradient_checkpointing(self, module, value=False): + if hasattr(module, "gradient_checkpointing"): + module.gradient_checkpointing = value + + @classmethod + def from_transformer( + cls, + transformer, + num_layers: int = 4, + num_single_layers: int = 10, + attention_head_dim: int = 128, + num_attention_heads: int = 24, + load_weights_from_transformer=True, + ): + config = dict(transformer.config) + config["num_layers"] = num_layers + config["num_single_layers"] = num_single_layers + config["attention_head_dim"] = attention_head_dim + config["num_attention_heads"] = num_attention_heads + + controlnet = cls.from_config(config) + + if load_weights_from_transformer: + controlnet.pos_embed.load_state_dict(transformer.pos_embed.state_dict()) + controlnet.time_text_embed.load_state_dict(transformer.time_text_embed.state_dict()) + controlnet.context_embedder.load_state_dict(transformer.context_embedder.state_dict()) + controlnet.x_embedder.load_state_dict(transformer.x_embedder.state_dict()) + controlnet.transformer_blocks.load_state_dict(transformer.transformer_blocks.state_dict(), strict=False) + controlnet.single_transformer_blocks.load_state_dict( + transformer.single_transformer_blocks.state_dict(), strict=False + ) + + controlnet.controlnet_x_embedder = zero_module(controlnet.controlnet_x_embedder) + + return controlnet + + # Edit 13 Adding attention masking to forward + def forward( + self, + hidden_states: torch.Tensor, + controlnet_cond: torch.Tensor, + controlnet_mode: torch.Tensor = None, + conditioning_scale: float = 1.0, + encoder_hidden_states: torch.Tensor = None, + pooled_projections: torch.Tensor = None, + timestep: torch.LongTensor = None, + img_ids: torch.Tensor = None, + txt_ids: torch.Tensor = None, + guidance: torch.Tensor = None, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + return_dict: bool = True, + attention_mask: Optional[torch.Tensor] = None, # <-- 1. ADD ARGUMENT HERE + + ) -> Union[torch.FloatTensor, Transformer2DModelOutput]: + """ + The [`FluxTransformer2DModel`] forward method. + + Args: + hidden_states (`torch.FloatTensor` of shape `(batch size, channel, height, width)`): + Input `hidden_states`. + controlnet_cond (`torch.Tensor`): + The conditional input tensor of shape `(batch_size, sequence_length, hidden_size)`. + controlnet_mode (`torch.Tensor`): + The mode tensor of shape `(batch_size, 1)`. + conditioning_scale (`float`, defaults to `1.0`): + The scale factor for ControlNet outputs. + encoder_hidden_states (`torch.FloatTensor` of shape `(batch size, sequence_len, embed_dims)`): + Conditional embeddings (embeddings computed from the input conditions such as prompts) to use. + pooled_projections (`torch.FloatTensor` of shape `(batch_size, projection_dim)`): Embeddings projected + from the embeddings of input conditions. + timestep ( `torch.LongTensor`): + Used to indicate denoising step. + block_controlnet_hidden_states: (`list` of `torch.Tensor`): + A list of tensors that if specified are added to the residuals of transformer blocks. + joint_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain + tuple. + + Returns: + If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a + `tuple` where the first element is the sample tensor. + """ + if joint_attention_kwargs is not None: + joint_attention_kwargs = joint_attention_kwargs.copy() + lora_scale = joint_attention_kwargs.pop("scale", 1.0) + else: + lora_scale = 1.0 + + if USE_PEFT_BACKEND: + # weight the lora layers by setting `lora_scale` for each PEFT layer + scale_lora_layers(self, lora_scale) + else: + if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None: + logger.warning( + "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective." + ) + hidden_states = self.x_embedder(hidden_states) + + if self.input_hint_block is not None: + controlnet_cond = self.input_hint_block(controlnet_cond) + batch_size, channels, height_pw, width_pw = controlnet_cond.shape + height = height_pw // self.config.patch_size + width = width_pw // self.config.patch_size + controlnet_cond = controlnet_cond.reshape( + batch_size, channels, height, self.config.patch_size, width, self.config.patch_size + ) + controlnet_cond = controlnet_cond.permute(0, 2, 4, 1, 3, 5) + controlnet_cond = controlnet_cond.reshape(batch_size, height * width, -1) + # add + hidden_states = hidden_states + self.controlnet_x_embedder(controlnet_cond) + + timestep = timestep.to(hidden_states.dtype) * 1000 + if guidance is not None: + guidance = guidance.to(hidden_states.dtype) * 1000 + else: + guidance = None + + #print ('Guidance:', guidance) + temb = ( + self.time_text_embed(timestep, pooled_projections) + if guidance is None + # edit 19 + else self.time_text_guidance_embed(timestep, guidance, pooled_projections) + ) + encoder_hidden_states = self.context_embedder(encoder_hidden_states) + + if self.union: + # union mode + if controlnet_mode is None: + raise ValueError("`controlnet_mode` cannot be `None` when applying ControlNet-Union") + # union mode emb + controlnet_mode_emb = self.controlnet_mode_embedder(controlnet_mode) + encoder_hidden_states = torch.cat([controlnet_mode_emb, encoder_hidden_states], dim=1) + txt_ids = torch.cat([txt_ids[:1], txt_ids], dim=0) + + if txt_ids.ndim == 3: + logger.warning( + "Passing `txt_ids` 3d torch.Tensor is deprecated." + "Please remove the batch dimension and pass it as a 2d torch Tensor" + ) + txt_ids = txt_ids[0] + if img_ids.ndim == 3: + logger.warning( + "Passing `img_ids` 3d torch.Tensor is deprecated." + "Please remove the batch dimension and pass it as a 2d torch Tensor" + ) + img_ids = img_ids[0] + + ids = torch.cat((txt_ids, img_ids), dim=0) + image_rotary_emb = self.pos_embed(ids) + + block_samples = () + for index_block, block in enumerate(self.transformer_blocks): + if torch.is_grad_enabled() and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + encoder_hidden_states, hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + encoder_hidden_states, + temb, + image_rotary_emb, + attention_mask, # Edit 13 + **ckpt_kwargs, + ) + + else: + encoder_hidden_states, hidden_states = block( + hidden_states=hidden_states, + encoder_hidden_states=encoder_hidden_states, + temb=temb, + image_rotary_emb=image_rotary_emb, + attention_mask=attention_mask, # Edit 13 + + ) + block_samples = block_samples + (hidden_states,) + + hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) + + single_block_samples = () + for index_block, block in enumerate(self.single_transformer_blocks): + if torch.is_grad_enabled() and self.gradient_checkpointing: + + def create_custom_forward(module, return_dict=None): + def custom_forward(*inputs): + if return_dict is not None: + return module(*inputs, return_dict=return_dict) + else: + return module(*inputs) + + return custom_forward + + ckpt_kwargs: Dict[str, Any] = {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} + hidden_states = torch.utils.checkpoint.checkpoint( + create_custom_forward(block), + hidden_states, + temb, + image_rotary_emb, + attention_mask, # <-- 2. PASS MASK TO GRADIENT CHECKPOINTING # Edit 13 + **ckpt_kwargs, + ) + + else: + hidden_states = block( + hidden_states=hidden_states, + temb=temb, + image_rotary_emb=image_rotary_emb, + attention_mask=attention_mask, # <-- 2. PASS MASK TO BLOCK Edit 13 + + ) + single_block_samples = single_block_samples + (hidden_states[:, encoder_hidden_states.shape[1] :],) + + # controlnet block + controlnet_block_samples = () + for block_sample, controlnet_block in zip(block_samples, self.controlnet_blocks): + block_sample = controlnet_block(block_sample) + controlnet_block_samples = controlnet_block_samples + (block_sample,) + + controlnet_single_block_samples = () + for single_block_sample, controlnet_block in zip(single_block_samples, self.controlnet_single_blocks): + single_block_sample = controlnet_block(single_block_sample) + controlnet_single_block_samples = controlnet_single_block_samples + (single_block_sample,) + + # scaling + controlnet_block_samples = [sample * conditioning_scale for sample in controlnet_block_samples] + controlnet_single_block_samples = [sample * conditioning_scale for sample in controlnet_single_block_samples] + + controlnet_block_samples = None if len(controlnet_block_samples) == 0 else controlnet_block_samples + controlnet_single_block_samples = ( + None if len(controlnet_single_block_samples) == 0 else controlnet_single_block_samples + ) + + if USE_PEFT_BACKEND: + # remove `lora_scale` from each PEFT layer + unscale_lora_layers(self, lora_scale) + + if not return_dict: + return (controlnet_block_samples, controlnet_single_block_samples) + + return FluxControlNetOutput( + controlnet_block_samples=controlnet_block_samples, + controlnet_single_block_samples=controlnet_single_block_samples, + ) + + +#################################### +##### ACTUAL PIPELINE STUFF ######## +#################################### + + +from diffusers.schedulers import FlowMatchEulerDiscreteScheduler +from diffusers.utils import ( + USE_PEFT_BACKEND, + is_torch_xla_available, + logging, + replace_example_docstring, + scale_lora_layers, + unscale_lora_layers, +) +from diffusers.utils.torch_utils import randn_tensor +from diffusers.pipelines.pipeline_utils import DiffusionPipeline +from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput + + +if is_torch_xla_available(): + import torch_xla.core.xla_model as xm + + XLA_AVAILABLE = True +else: + XLA_AVAILABLE = False + +# TODO(Chris): why won't this emit messages at the INFO level??? +logger = logging.get_logger(__name__) # pylint: disable=invalid-name + +EXAMPLE_DOC_STRING = """ + Examples: + ```py + >>> import torch + >>> from diffusers.utils import load_image + >>> from diffusers import FluxControlNetPipeline + >>> from diffusers import FluxControlNetModel + + >>> controlnet_model = "InstantX/FLUX.1-dev-controlnet-canny" + >>> controlnet = FluxControlNetModel.from_pretrained(controlnet_model, torch_dtype=torch.bfloat16) + >>> pipe = FluxControlNetPipeline.from_pretrained( + ... base_model, controlnet=controlnet, torch_dtype=torch.bfloat16 + ... ) + >>> pipe.to("cuda") + >>> control_image = load_image("https://huggingface.co/InstantX/SD3-Controlnet-Canny/resolve/main/canny.jpg") + >>> prompt = "A girl in city, 25 years old, cool, futuristic" + >>> image = pipe( + ... prompt, + ... control_image=control_image, + ... controlnet_conditioning_scale=0.6, + ... num_inference_steps=28, + ... guidance_scale=3.5, + ... ).images[0] + >>> image.save("flux.png") + ``` +""" + +def _maybe_to(x: torch.Tensor, device: Optional[torch.device] = None, dtype: Optional[torch.dtype] = None): + if device is None and dtype is None: + return x + need_dev = device is not None and str(getattr(x, "device", None)) != str(device) + need_dt = dtype is not None and getattr(x, "dtype", None) != dtype + return x.to(device=device if need_dev else x.device, dtype=dtype if need_dt else x.dtype) if (need_dev or need_dt) else x + + +# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift +def calculate_shift( + image_seq_len, + base_seq_len: int = 256, + max_seq_len: int = 4096, + base_shift: float = 0.5, + max_shift: float = 1.16, +): + m = (max_shift - base_shift) / (max_seq_len - base_seq_len) + b = base_shift - m * base_seq_len + mu = image_seq_len * m + b + return mu + + +# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps +def retrieve_timesteps( + scheduler, + num_inference_steps: Optional[int] = None, + device: Optional[Union[str, torch.device]] = None, + timesteps: Optional[List[int]] = None, + sigmas: Optional[List[float]] = None, + **kwargs, +): + """ + Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles + custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. + + Args: + scheduler (`SchedulerMixin`): + The scheduler to get timesteps from. + num_inference_steps (`int`): + The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` + must be `None`. + device (`str` or `torch.device`, *optional*): + The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. + timesteps (`List[int]`, *optional*): + Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, + `num_inference_steps` and `sigmas` must be `None`. + sigmas (`List[float]`, *optional*): + Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, + `num_inference_steps` and `timesteps` must be `None`. + + Returns: + `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the + second element is the number of inference steps. + """ + if timesteps is not None and sigmas is not None: + raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") + if timesteps is not None: + accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accepts_timesteps: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" timestep schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + elif sigmas is not None: + accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) + if not accept_sigmas: + raise ValueError( + f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" + f" sigmas schedules. Please check whether you are using the correct scheduler." + ) + scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) + timesteps = scheduler.timesteps + num_inference_steps = len(timesteps) + else: + scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) + timesteps = scheduler.timesteps + return timesteps, num_inference_steps + + +class LibreFluxControlNetPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixin): + r""" + The Flux pipeline for text-to-image generation. + + Reference: https://blackforestlabs.ai/announcing-black-forest-labs/ + + Args: + transformer ([`FluxTransformer2DModel`]): + Conditional Transformer (MMDiT) architecture to denoise the encoded image latents. + scheduler ([`FlowMatchEulerDiscreteScheduler`]): + A scheduler to be used in combination with `transformer` to denoise the encoded image latents. + vae ([`AutoencoderKL`]): + Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. + text_encoder ([`CLIPTextModel`]): + [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically + the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. + text_encoder_2 ([`T5EncoderModel`]): + [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically + the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant. + tokenizer (`CLIPTokenizer`): + Tokenizer of class + [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer). + tokenizer_2 (`T5TokenizerFast`): + Second Tokenizer of class + [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast). + """ + + model_cpu_offload_seq = "text_encoder->text_encoder_2->transformer->vae" + _optional_components = [] + _callback_tensor_inputs = ["latents", "prompt_embeds"] + + def __init__( + self, + scheduler: FlowMatchEulerDiscreteScheduler, + vae: AutoencoderKL, + text_encoder: CLIPTextModel, + tokenizer: CLIPTokenizer, + text_encoder_2: T5EncoderModel, + tokenizer_2: T5TokenizerFast, + transformer: LibreFluxTransformer2DModel, + controlnet: Union[ + LibreFluxControlNetModel, List[LibreFluxControlNetModel], Tuple[LibreFluxControlNetModel], + ], + ): + super().__init__() + + self.register_modules( + vae=vae, + text_encoder=text_encoder, + text_encoder_2=text_encoder_2, + tokenizer=tokenizer, + tokenizer_2=tokenizer_2, + transformer=transformer, + scheduler=scheduler, + controlnet=controlnet, + ) + self.vae_scale_factor = ( + 2 ** (len(self.vae.config.block_out_channels)) if hasattr(self, "vae") and self.vae is not None else 16 + ) + self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) + self.tokenizer_max_length = ( + self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77 + ) + self.default_sample_size = 64 + + def _get_t5_prompt_embeds( + self, + prompt: Union[str, List[str]] = None, + num_images_per_prompt: int = 1, + max_sequence_length: int = 512, + device: Optional[torch.device] = None, + dtype: Optional[torch.dtype] = None, + ): + device = device or self._execution_device + dtype = dtype or self.text_encoder.dtype + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + text_inputs = self.tokenizer_2( + prompt, + padding="max_length", + max_length=max_sequence_length, + truncation=True, + return_length=False, + return_overflowing_tokens=False, + return_tensors="pt", + ) + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids + + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because `max_sequence_length` is set to " + f" {max_sequence_length} tokens: {removed_text}" + ) + + prompt_embeds = self.text_encoder_2(text_input_ids.to(self.text_encoder_2.device), output_hidden_states=False)[0] + #prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0] + + dtype = self.text_encoder_2.dtype + prompt_embeds = prompt_embeds.to(dtype=dtype, device=device) + + _, seq_len, _ = prompt_embeds.shape + + # duplicate text embeddings for each generation per prompt + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) + + # ADD THIS: Get the attention mask and repeat it for each image + prompt_attention_mask = text_inputs.attention_mask.to(device=device, dtype=dtype) + prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1) + + # ADD THIS: Return the attention mask + return prompt_embeds, prompt_attention_mask + + def _get_clip_prompt_embeds( + self, + prompt: Union[str, List[str]], + num_images_per_prompt: int = 1, + device: Optional[torch.device] = None, + ): + device = device or self._execution_device + + prompt = [prompt] if isinstance(prompt, str) else prompt + batch_size = len(prompt) + + text_inputs = self.tokenizer( + prompt, + padding="max_length", + max_length=self.tokenizer_max_length, + truncation=True, + return_overflowing_tokens=False, + return_length=False, + return_tensors="pt", + ) + + text_input_ids = text_inputs.input_ids + untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids + if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids): + removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1]) + logger.warning( + "The following part of your input was truncated because CLIP can only handle sequences up to" + f" {self.tokenizer_max_length} tokens: {removed_text}" + ) + prompt_embeds = self.text_encoder(text_input_ids.to(self.text_encoder.device), output_hidden_states=False) + #prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False) + + # Use pooled output of CLIPTextModel + prompt_embeds = prompt_embeds.pooler_output + prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device) + + # duplicate text embeddings for each generation per prompt, using mps friendly method + prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) + prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1) + + return prompt_embeds + + def encode_prompt( + self, + prompt: Union[str, List[str]], + prompt_2: Union[str, List[str]], + device: Optional[torch.device] = None, + num_images_per_prompt: int = 1, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + max_sequence_length: int = 512, + lora_scale: Optional[float] = None, + ): + device = device or self._execution_device + + if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin): + self._lora_scale = lora_scale + if self.text_encoder is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None and USE_PEFT_BACKEND: + scale_lora_layers(self.text_encoder_2, lora_scale) + + prompt = [prompt] if isinstance(prompt, str) else prompt + + if prompt_embeds is None: + prompt_2 = prompt_2 or prompt + prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 + + pooled_prompt_embeds = self._get_clip_prompt_embeds( + prompt=prompt, + device=device, + num_images_per_prompt=num_images_per_prompt, + ) + + # ADD THIS: Initialize mask and capture it from the T5 embedder + prompt_attention_mask = None + prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds( + prompt=prompt_2, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + device=device, + ) + + if self.text_encoder is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder, lora_scale) + if self.text_encoder_2 is not None: + if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND: + unscale_lora_layers(self.text_encoder_2, lora_scale) + + # FIX: Get batch_size and create text_ids with the correct shape + batch_size = prompt_embeds.shape[0] + dtype = self.transformer.dtype + text_ids = torch.zeros(batch_size, prompt_embeds.shape[1], 3).to(device=device, dtype=dtype) + + return prompt_embeds, pooled_prompt_embeds, text_ids, prompt_attention_mask + + def check_inputs( + self, + prompt, + prompt_2, + height, + width, + prompt_embeds=None, + pooled_prompt_embeds=None, + callback_on_step_end_tensor_inputs=None, + max_sequence_length=None, + ): + if height % 8 != 0 or width % 8 != 0: + raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") + + if callback_on_step_end_tensor_inputs is not None and not all( + k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs + ): + raise ValueError( + f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" + ) + + if prompt is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt_2 is not None and prompt_embeds is not None: + raise ValueError( + f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" + " only forward one of the two." + ) + elif prompt is None and prompt_embeds is None: + raise ValueError( + "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." + ) + elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): + raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") + elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): + raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") + + if prompt_embeds is not None and pooled_prompt_embeds is None: + raise ValueError( + "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." + ) + + if max_sequence_length is not None and max_sequence_length > 512: + raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}") + + @staticmethod + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids + # FIX: Correctly creates batched image IDs + def _prepare_latent_image_ids(batch_size, height, width, device, dtype): + latent_image_ids = torch.zeros(height // 2, width // 2, 3) + latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + + latent_image_ids = latent_image_ids.unsqueeze(0).repeat(batch_size, 1, 1, 1) + + latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape[1:] + + latent_image_ids = latent_image_ids.reshape( + batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels + ) + + return latent_image_ids.to(device=device, dtype=dtype) + + @staticmethod + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents + def _pack_latents(latents, batch_size, num_channels_latents, height, width): + latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2) + latents = latents.permute(0, 2, 4, 1, 3, 5) + latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4) + + return latents + + @staticmethod + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents + def _unpack_latents(latents, height, width, vae_scale_factor): + batch_size, num_patches, channels = latents.shape + + height = height // vae_scale_factor + width = width // vae_scale_factor + + latents = latents.view(batch_size, height, width, channels // 4, 2, 2) + latents = latents.permute(0, 3, 1, 4, 2, 5) + + latents = latents.reshape(batch_size, channels // (2 * 2), height * 2, width * 2) + + return latents + + # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_latents + def prepare_latents( + self, + batch_size, + num_channels_latents, + height, + width, + dtype, + device, + generator, + latents=None, + ): + height = 2 * (int(height) // self.vae_scale_factor) + width = 2 * (int(width) // self.vae_scale_factor) + + shape = (batch_size, num_channels_latents, height, width) + + if latents is not None: + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + return latents.to(device=device, dtype=dtype), latent_image_ids + + if isinstance(generator, list) and len(generator) != batch_size: + raise ValueError( + f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" + f" size of {batch_size}. Make sure the batch size matches the length of the generators." + ) + + latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) + latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width) + + latent_image_ids = self._prepare_latent_image_ids(batch_size, height, width, device, dtype) + + return latents, latent_image_ids + + # Copied from diffusers.pipelines.controlnet_sd3.pipeline_stable_diffusion_3_controlnet.StableDiffusion3ControlNetPipeline.prepare_image + def prepare_image( + self, + image, + width, + height, + batch_size, + num_images_per_prompt, + device, + dtype, + do_classifier_free_guidance=False, + guess_mode=False, + ): + if isinstance(image, torch.Tensor): + pass + else: + image = self.image_processor.preprocess(image, height=height, width=width) + + image_batch_size = image.shape[0] + + if image_batch_size == 1: + repeat_by = batch_size + else: + # image batch size is the same as prompt batch size + repeat_by = num_images_per_prompt + + image = image.repeat_interleave(repeat_by, dim=0) + + image = image.to(device=device, dtype=dtype) + + if do_classifier_free_guidance and not guess_mode: + image = torch.cat([image] * 2) + + return image + + @property + def guidance_scale(self): + return self._guidance_scale + + @property + def joint_attention_kwargs(self): + return self._joint_attention_kwargs + + @property + def num_timesteps(self): + return self._num_timesteps + + @property + def interrupt(self): + return self._interrupt + + @torch.no_grad() + @replace_example_docstring(EXAMPLE_DOC_STRING) + def __call__( + self, + prompt: Union[str, List[str]] = None, + prompt_2: Optional[Union[str, List[str]]] = None, + height: Optional[int] = None, + width: Optional[int] = None, + num_inference_steps: int = 28, + timesteps: List[int] = None, + guidance_scale: float = 7.0, + control_image: PipelineImageInput = None, + control_mode: Optional[Union[int, List[int]]] = None, + control_image_undo_centering: bool = False, + controlnet_conditioning_scale: Union[float, List[float]] = 1.0, + num_images_per_prompt: Optional[int] = 1, + generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, + latents: Optional[torch.FloatTensor] = None, + prompt_embeds: Optional[torch.FloatTensor] = None, + pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + output_type: Optional[str] = "pil", + return_dict: bool = True, + joint_attention_kwargs: Optional[Dict[str, Any]] = None, + callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, + callback_on_step_end_tensor_inputs: List[str] = ["latents"], + max_sequence_length: int = 512, + negative_prompt: Optional[Union[str, List[str]]] = "", + negative_prompt_2: Optional[Union[str, List[str]]] = "", + negative_prompt_embeds: Optional[torch.FloatTensor] = None, + negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, + ): + r""" + Function invoked when calling the pipeline for generation. + + Args: + prompt (`str` or `List[str]`, *optional*): + The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. + instead. + prompt_2 (`str` or `List[str]`, *optional*): + The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is + will be used instead + height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The height in pixels of the generated image. This is set to 1024 by default for the best results. + width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): + The width in pixels of the generated image. This is set to 1024 by default for the best results. + num_inference_steps (`int`, *optional*, defaults to 50): + The number of denoising steps. More denoising steps usually lead to a higher quality image at the + expense of slower inference. + timesteps (`List[int]`, *optional*): + Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument + in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is + passed will be used. Must be in descending order. + guidance_scale (`float`, *optional*, defaults to 7.0): + Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). + `guidance_scale` is defined as `w` of equation 2. of [Imagen + Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > + 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, + usually at the expense of lower image quality. + control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: + `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): + The ControlNet input condition to provide guidance to the `unet` for generation. If the type is + specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be accepted + as an image. The dimensions of the output image defaults to `image`'s dimensions. If height and/or + width are passed, `image` is resized accordingly. If multiple ControlNets are specified in `init`, + images must be passed as a list such that each element of the list can be correctly batched for input + to a single ControlNet. + controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): + The outputs of the ControlNet are multiplied by `controlnet_conditioning_scale` before they are added + to the residual in the original `unet`. If multiple ControlNets are specified in `init`, you can set + the corresponding scale as a list. + control_mode (`int` or `List[int]`,, *optional*, defaults to None): + The control mode when applying ControlNet-Union. + num_images_per_prompt (`int`, *optional*, defaults to 1): + The number of images to generate per prompt. + generator (`torch.Generator` or `List[torch.Generator]`, *optional*): + One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) + to make generation deterministic. + latents (`torch.FloatTensor`, *optional*): + Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image + generation. Can be used to tweak the same generation with different prompts. If not provided, a latents + tensor will ge generated by sampling using the supplied random `generator`. + prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not + provided, text embeddings will be generated from `prompt` input argument. + pooled_prompt_embeds (`torch.FloatTensor`, *optional*): + Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. + If not provided, pooled text embeddings will be generated from `prompt` input argument. + output_type (`str`, *optional*, defaults to `"pil"`): + The output format of the generate image. Choose between + [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. + return_dict (`bool`, *optional*, defaults to `True`): + Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. + joint_attention_kwargs (`dict`, *optional*): + A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under + `self.processor` in + [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). + callback_on_step_end (`Callable`, *optional*): + A function that calls at the end of each denoising steps during the inference. The function is called + with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, + callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by + `callback_on_step_end_tensor_inputs`. + callback_on_step_end_tensor_inputs (`List`, *optional*): + The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list + will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the + `._callback_tensor_inputs` attribute of your pipeline class. + max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. + + Examples: + + Returns: + [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` + is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated + images. + """ + + height = height or self.default_sample_size * self.vae_scale_factor + width = width or self.default_sample_size * self.vae_scale_factor + + # 1. Check inputs. Raise error if not correct + self.check_inputs( + prompt, + prompt_2, + height, + width, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, + max_sequence_length=max_sequence_length, + ) + + self._guidance_scale = guidance_scale + self._joint_attention_kwargs = joint_attention_kwargs + self._interrupt = False + + # 2. Define call parameters + if prompt is not None and isinstance(prompt, str): + batch_size = 1 + elif prompt is not None and isinstance(prompt, list): + batch_size = len(prompt) + else: + batch_size = prompt_embeds.shape[0] + + device = self._execution_device + dtype = self.transformer.dtype + + lora_scale = ( + self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None + ) + # 💡 ADD THIS: Capture the attention_mask from encode_prompt + ( + prompt_embeds, + pooled_prompt_embeds, + text_ids, + attention_mask, + ) = self.encode_prompt( + prompt=prompt, + prompt_2=prompt_2, + prompt_embeds=prompt_embeds, + pooled_prompt_embeds=pooled_prompt_embeds, + device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, + lora_scale=lora_scale, + ) + + # ✨ FIX: Encode negative prompts for CFG + do_classifier_free_guidance = guidance_scale > 1.0 + if do_classifier_free_guidance: + if negative_prompt_embeds is None or negative_pooled_prompt_embeds is None: + negative_prompt = negative_prompt or "" + negative_prompt_2 = negative_prompt_2 or negative_prompt + (negative_prompt_embeds, negative_pooled_prompt_embeds, negative_text_ids, negative_attention_mask) = self.encode_prompt( + prompt=negative_prompt, prompt_2=negative_prompt_2, device=device, + num_images_per_prompt=num_images_per_prompt, + max_sequence_length=max_sequence_length, lora_scale=lora_scale, + ) + + + # 3. Prepare control image + num_channels_latents = self.transformer.config.in_channels // 4 + + if type(self.controlnet) == FullyShardedDataParallel: + inner_module = self.controlnet._fsdp_wrapped_module + else: + inner_module = self.controlnet + + if isinstance(inner_module, LibreFluxControlNetModel): + control_image = self.prepare_image( + image=control_image, + width=width, + height=height, + batch_size=batch_size * num_images_per_prompt, + num_images_per_prompt=num_images_per_prompt, + device=device, + dtype=dtype, + ) + + if control_image_undo_centering: + if not self.image_processor.do_normalize: + raise ValueError( + "`control_image_undo_centering` only makes sense if `do_normalize==True` in the image processor" + ) + control_image = control_image*0.5 + 0.5 + + height, width = control_image.shape[-2:] + + #logger.warning( + # f"pipeline_flux_controlnet, control_image: {control_image.min()} {control_image.max()}" + #) + + # vae encode + control_image = _maybe_to(control_image, device=self.vae.device) + control_image = self.vae.encode(control_image).latent_dist.sample() + control_image = (control_image - self.vae.config.shift_factor) * self.vae.config.scaling_factor + control_image = _maybe_to(control_image, device=device) + # pack + height_control_image, width_control_image = control_image.shape[2:] + control_image = self._pack_latents( + control_image, + batch_size * num_images_per_prompt, + num_channels_latents, + height_control_image, + width_control_image, + ) + + # set control mode + if control_mode is not None: + control_mode = torch.tensor(control_mode).to(device, dtype=torch.long) + control_mode = control_mode.reshape([-1, 1]) + + + # set control mode + control_mode_ = [] + if isinstance(control_mode, list): + for cmode in control_mode: + if cmode is None: + control_mode_.append(-1) + else: + control_mode_.append(cmode) + control_mode = torch.tensor(control_mode_).to(device, dtype=torch.long) + control_mode = control_mode.reshape([-1, 1]) + + # 4. Prepare latent variables + num_channels_latents = self.transformer.config.in_channels // 4 + latents, latent_image_ids = self.prepare_latents( + batch_size * num_images_per_prompt, + num_channels_latents, + height, + width, + prompt_embeds.dtype, + device, + generator, + latents, + ) + + # 5. Prepare timesteps + sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) + image_seq_len = latents.shape[1] + mu = calculate_shift( + image_seq_len, + self.scheduler.config.base_image_seq_len, + self.scheduler.config.max_image_seq_len, + self.scheduler.config.base_shift, + self.scheduler.config.max_shift, + ) + timesteps, num_inference_steps = retrieve_timesteps( + self.scheduler, + num_inference_steps, + device, + timesteps, + sigmas, + mu=mu, + ) + + num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) + self._num_timesteps = len(timesteps) + + # 6. Denoising loop + target_device = self.transformer.device + self.controlnet.to(target_device) + with self.progress_bar(total=num_inference_steps) as progress_bar: + for i, t in enumerate(timesteps): + if self.interrupt: + continue + + + # FIX: BATCH INPUTS FOR CFG + if do_classifier_free_guidance: + latent_model_input = torch.cat([latents] * 2) + current_prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) + current_pooled_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds]) + current_attention_mask = torch.cat([negative_attention_mask, attention_mask]) + current_text_ids = torch.cat([negative_text_ids, text_ids]) + current_img_ids = torch.cat([latent_image_ids] * 2) + current_control_image = torch.cat([control_image] * 2) if isinstance(control_image, torch.Tensor) else [torch.cat([c_img] * 2) for c_img in control_image] + else: + latent_model_input = latents + current_prompt_embeds = prompt_embeds + current_pooled_embeds = pooled_prompt_embeds + current_attention_mask = attention_mask + current_text_ids = text_ids + current_img_ids = latent_image_ids + current_control_image = control_image + + # FIX: Integrate with device handling + target_device = self.transformer.device + + # Move all inputs to the target device + latent_model_input = _maybe_to(latent_model_input, device=target_device) + current_prompt_embeds = _maybe_to(current_prompt_embeds, device=target_device) + current_pooled_embeds = _maybe_to(current_pooled_embeds, device=target_device) + current_attention_mask = _maybe_to(current_attention_mask, device=target_device) + current_text_ids = _maybe_to(current_text_ids, device=target_device) + current_img_ids = _maybe_to(current_img_ids, device=target_device) + if isinstance(current_control_image, torch.Tensor): + current_control_image = _maybe_to(current_control_image, device=target_device) + else: + current_control_image = [ _maybe_to(c, device=target_device) for c in current_control_image ] + control_mode = _maybe_to(control_mode, device=target_device) if control_mode is not None else None + + t_model = t.expand(latent_model_input.shape[0]).to(target_device) + + + # Model calls + controlnet_block_samples, controlnet_single_block_samples = self.controlnet( + hidden_states=latent_model_input, + controlnet_cond=current_control_image, + controlnet_mode=control_mode, + conditioning_scale=controlnet_conditioning_scale, + timestep=(t_model / 1000), + guidance=None, + pooled_projections=current_pooled_embeds, + encoder_hidden_states=current_prompt_embeds, + attention_mask=current_attention_mask, + txt_ids=current_text_ids, + img_ids=current_img_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False + ) + + controlnet_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_block_samples] + controlnet_single_block_samples = [elem.to(dtype=latents.dtype, device=target_device) for elem in controlnet_single_block_samples] + + noise_pred = self.transformer( + hidden_states=latent_model_input, + timestep=(t_model / 1000), + guidance=None, + pooled_projections=current_pooled_embeds, + encoder_hidden_states=current_prompt_embeds, + attention_mask=current_attention_mask, + controlnet_block_samples=controlnet_block_samples, + controlnet_single_block_samples=controlnet_single_block_samples, + txt_ids=current_text_ids, + img_ids=current_img_ids, + joint_attention_kwargs=self.joint_attention_kwargs, + return_dict=False + )[0] + + # FIX: Apply CFG formula + if do_classifier_free_guidance: + noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2) + noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond) + + ## Probably not needed + #noise_pred = noise_pred.to(latents.device) + + latents_dtype = latents.dtype + latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] + + if latents.dtype != latents_dtype: + if torch.backends.mps.is_available(): + # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 + latents = latents.to(latents_dtype) + + if callback_on_step_end is not None: + callback_kwargs = {} + for k in callback_on_step_end_tensor_inputs: + callback_kwargs[k] = locals()[k] + callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) + + latents = callback_outputs.pop("latents", latents) + prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) + + # call the callback, if provided + if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): + progress_bar.update() + + if XLA_AVAILABLE: + xm.mark_step() + + if output_type == "latent": + image = latents + + else: + latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) + latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor + + latents = _maybe_to(latents, device=self.vae.device) + image = self.vae.decode(latents, return_dict=False)[0] + image = self.image_processor.postprocess(image, output_type=output_type) + + # Offload all models + self.maybe_free_model_hooks() + + if not return_dict: + return (image,) + + return FluxPipelineOutput(images=image) \ No newline at end of file