File size: 1,366 Bytes
a243c93 e5e0edf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
---
tags:
- bert
- oBERT
- sparsity
- pruning
- compression
language: en
datasets: squad
---
# oBERT-12-downstream-pruned-unstructured-97-squadv1
This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259).
It corresponds to the model presented in the `Table 1 - 30 Epochs - oBERT - SQuADv1 97%`.
```
Pruning method: oBERT downstream unstructured
Paper: https://arxiv.org/abs/2203.07259
Dataset: SQuADv1
Sparsity: 97%
Number of layers: 12
```
The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`):
```
| oBERT 97% | F1 | EM |
| ------------ | ----- | ----- |
| seed=42 (*)| 86.06 | 78.28 |
| seed=3407 | 86.04 | 78.12 |
| seed=54321 | 85.85 | 77.93 |
| ------------ | ----- | ----- |
| mean | 85.98 | 78.11 |
| stdev | 0.115 | 0.175 |
```
Code: _coming soon_
## BibTeX entry and citation info
```bibtex
@article{kurtic2022optimal,
title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models},
author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan},
journal={arXiv preprint arXiv:2203.07259},
year={2022}
}
``` |