File size: 1,366 Bytes
a243c93
 
 
 
 
 
 
 
 
 
e5e0edf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
tags:
- bert
- oBERT
- sparsity
- pruning
- compression
language: en
datasets: squad
---
# oBERT-12-downstream-pruned-unstructured-97-squadv1

This model is obtained with [The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models](https://arxiv.org/abs/2203.07259).


It corresponds to the model presented in the `Table 1 - 30 Epochs - oBERT - SQuADv1 97%`.

```
Pruning method: oBERT downstream unstructured
Paper: https://arxiv.org/abs/2203.07259
Dataset: SQuADv1
Sparsity: 97%
Number of layers: 12
```

The dev-set performance reported in the paper is averaged over three seeds, and we release the best model (marked with `(*)`):

```
| oBERT 97%    | F1    | EM    |
| ------------ | ----- | ----- |
| seed=42   (*)| 86.06 | 78.28 |
| seed=3407    | 86.04 | 78.12 |
| seed=54321   | 85.85 | 77.93 |
| ------------ | ----- | ----- |
| mean         | 85.98 | 78.11 |
| stdev        | 0.115 | 0.175 |
```

Code: _coming soon_

## BibTeX entry and citation info
```bibtex
@article{kurtic2022optimal,
  title={The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models},
  author={Kurtic, Eldar and Campos, Daniel and Nguyen, Tuan and Frantar, Elias and Kurtz, Mark and Fineran, Benjamin and Goin, Michael and Alistarh, Dan},
  journal={arXiv preprint arXiv:2203.07259},
  year={2022}
}
```