abhinavnmagic's picture
Update README.md
372b6ff verified
|
raw
history blame
7.41 kB
---
language:
- en
pipeline_tag: text-generation
license: llama2
---
# gemma-2-9b-it-quantized.w4a16
## Model Overview
- **Model Architecture:** Gemma-2
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT4
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 8/16/2024
- **Version:** 1.0
- **License(s)**: [Gemma](https://ai.google.dev/gemma/terms)
- **Model Developers:** Neural Magic
Quantized version of [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it).
It achieves an average score of 73.62 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 73.23.
### Model Optimizations
This model was obtained by quantizing the weights of [gemma-2-9b-it](https://huggingface.co/google/gemma-2-9b-it) to INT4 data type.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights of the linear operators within transformers blocks are quantized. Symmetric group-wise quantization is applied, in which a linear scaling per group maps the INT4 and floating point representations of the quantized weights.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library. Quantization is performed with 1% damping factor, group-size as 128 and 512 sequences sampled from [Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus).
## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/gemma-2-9b-it-quantized.w4a16"
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you? Please respond in pirate speak."},
]
prompts = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
llm = LLM(model=model_id, tensor_parallel_size=2)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
### Use with transformers
The following example contemplates how the model can be deployed in Transformers using the `generate()` function.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "neuralmagic/gemma-2-9b-it-quantized.w4a16"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you? Please respond in pirate speak"},
]
input_ids = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
return_tensors="pt"
).to(model.device)
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
outputs = model.generate(
input_ids,
max_new_tokens=256,
eos_token_id=terminators,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
```
## Creation
This model was created by using the [llm-compressor](https://github.com/vllm-project/llm-compressor) library as presented in the code snipet below.
```python
from transformers import AutoTokenizer
from llmcompressor.transformers import SparseAutoModelForCausalLM, oneshot
from llmcompressor.modifiers.quantization import GPTQModifier
from datasets import load_dataset
import random
model_id = "google/gemma-2-9b-it"
num_samples = 512
max_seq_len = 4096
tokenizer = AutoTokenizer.from_pretrained(model_id)
preprocess_fn = lambda example: {"text": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n{text}".format_map(example)}
dataset_name = "neuralmagic/LLM_compression_calibration"
dataset = load_dataset(dataset_name, split="train")
ds = dataset.shuffle().select(range(num_samples))
ds = ds.map(preprocess_fn)
examples = [
tokenizer(
example["text"], padding=False, max_length=max_seq_len, truncation=True,
) for example in ds
]
recipe = GPTQModifier(
targets="Linear",
scheme="W4A16",
ignore=["lm_head"],
dampening_frac=0.01,
)
model = SparseAutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
trust_remote_code=True,
)
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
num_calibration_samples=num_samples,
)
model.save_pretrained("gemma-2-9b-it-quantized.w4a16")
```
## Evaluation
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command:
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/gemma-2-9b-it-quantized.w4a16",dtype=auto,tensor_parallel_size=2,gpu_memory_utilization=0.4,add_bos_token=True,max_model_len=4096,trust_remote_code=True \
--tasks openllm \
--batch_size auto
```
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>gemma-2-9b-it </strong>
</td>
<td><strong>gemma-2-9b-it-quantized.w4a16(this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>72.28
</td>
<td>71.36
</td>
<td>98.72%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>71.5
</td>
<td>70.98
</td>
<td>99.27%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>76.26
</td>
<td>79.83
</td>
<td>104.68%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>81.91
</td>
<td>81.29
</td>
<td>99.24%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>77.11
</td>
<td>78.29
</td>
<td>101.53%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot)
</td>
<td>60.32
</td>
<td>59.97
</td>
<td>99.42%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>73.23</strong>
</td>
<td><strong>73.62</strong>
</td>
<td><strong>100.53%</strong>
</td>
</tr>
</table>