|
|
|
|
|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
tags: |
|
- mistral |
|
- mistral-small |
|
- fp8 |
|
- vllm |
|
base_model: mistralai/Mistral-Small-24B-Instruct-2501 |
|
library_name: transformers |
|
--- |
|
|
|
# Mistral-Small-24B-Instruct-2501-FP8-Dynamic |
|
|
|
## Model Overview |
|
- **Model Architecture:** Mistral-Small-24B-Instruct-2501 |
|
- **Input:** Text |
|
- **Output:** Text |
|
- **Model Optimizations:** |
|
- **Weight quantization:** FP8 |
|
- **Activation quantization:** FP8 |
|
- **Release Date:** 3/1/2025 |
|
- **Version:** 1.0 |
|
- **Model Developers:** Neural Magic |
|
|
|
Quantized version of [Mistral-Small-24B-Instruct-2501](https://huggingface.co/mistralai/Mistral-Small-24B-Instruct-2501). |
|
It achieves an average score of 78.88 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 79.45. |
|
|
|
### Model Optimizations |
|
|
|
This model was obtained by quantizing the weights and activations to FP8 data type, ready for inference with vLLM. |
|
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%. Only the weights and activations of the linear operators within transformers blocks are quantized. |
|
|
|
## Deployment |
|
|
|
### Use with vLLM |
|
|
|
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below. |
|
|
|
```python |
|
from transformers import AutoTokenizer |
|
from vllm import LLM, SamplingParams |
|
|
|
max_model_len, tp_size = 4096, 1 |
|
model_name = "neuralmagic/Mistral-Small-24B-Instruct-2501-FP8-Dynamic" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True) |
|
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id]) |
|
|
|
messages_list = [ |
|
[{"role": "user", "content": "Who are you? Please respond in pirate speak!"}], |
|
] |
|
|
|
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list] |
|
|
|
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params) |
|
|
|
generated_text = [output.outputs[0].text for output in outputs] |
|
print(generated_text) |
|
``` |
|
|
|
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. |
|
|
|
## Creation |
|
|
|
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below. |
|
|
|
|
|
```python |
|
import argparse |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from llmcompressor.modifiers.quantization import QuantizationModifier |
|
from llmcompressor.transformers import oneshot |
|
import os |
|
|
|
def main(): |
|
parser = argparse.ArgumentParser(description='Quantize a transformer model to FP8') |
|
parser.add_argument('--model_id', type=str, required=True, |
|
help='The model ID from HuggingFace (e.g., "meta-llama/Meta-Llama-3-8B-Instruct")') |
|
parser.add_argument('--save_path', type=str, default='.', |
|
help='Custom path to save the quantized model. If not provided, will use model_name-FP8-dynamic') |
|
args = parser.parse_args() |
|
|
|
# Load model |
|
model = AutoModelForCausalLM.from_pretrained( |
|
args.model_id, device_map="auto", torch_dtype="auto", trust_remote_code=True, |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(args.model_id) |
|
|
|
# Configure the quantization algorithm and scheme |
|
recipe = QuantizationModifier( |
|
targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"] |
|
) |
|
|
|
# Apply quantization |
|
oneshot(model=model, recipe=recipe) |
|
|
|
save_path = os.path.join(args.save_path, args.model_id.split("/")[1] + "-FP8-dynamic") |
|
os.makedirs(save_path, exist_ok=True) |
|
|
|
# Save to disk in compressed-tensors format |
|
model.save_pretrained(save_path) |
|
tokenizer.save_pretrained(save_path) |
|
print(f"Model and tokenizer saved to: {save_path}") |
|
|
|
if __name__ == "__main__": |
|
main() |
|
``` |
|
|
|
## Evaluation |
|
|
|
The model was evaluated on OpenLLM Leaderboard [V1](https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard) and [V2](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard#/), using the following commands: |
|
|
|
OpenLLM Leaderboard V1: |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Mistral-Small-24B-Instruct-2501-FP8-Dynamic",dtype=auto,add_bos_token=True,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ |
|
--tasks openllm \ |
|
--write_out \ |
|
--batch_size auto \ |
|
--output_path output_dir \ |
|
--show_config |
|
``` |
|
|
|
OpenLLM Leaderboard V2: |
|
``` |
|
lm_eval \ |
|
--model vllm \ |
|
--model_args pretrained="neuralmagic/Mistral-Small-24B-Instruct-2501-FP8-Dynamic",dtype=auto,add_bos_token=False,max_model_len=4096,tensor_parallel_size=1,gpu_memory_utilization=0.8,enable_chunked_prefill=True,trust_remote_code=True \ |
|
--apply_chat_template \ |
|
--fewshot_as_multiturn \ |
|
--tasks leaderboard \ |
|
--write_out \ |
|
--batch_size auto \ |
|
--output_path output_dir \ |
|
--show_config |
|
|
|
``` |
|
|
|
### Accuracy |
|
|
|
#### OpenLLM Leaderboard V1 evaluation scores |
|
|
|
| Metric | mistralai/Mistral-Small-24B-Instruct-2501 | nm-testing/Mistral-Small-24B-Instruct-2501-FP8-dynamic | |
|
|-----------------------------------------|:---------------------------------:|:-------------------------------------------:| |
|
| ARC-Challenge (Acc-Norm, 25-shot) | 72.18 | 71.76 | |
|
| GSM8K (Strict-Match, 5-shot) | 90.14 | 89.01 | |
|
| HellaSwag (Acc-Norm, 10-shot) | 85.05 | 84.65 | |
|
| MMLU (Acc, 5-shot) | 80.69 | 80.55 | |
|
| TruthfulQA (MC2, 0-shot) | 65.55 | 64.85 | |
|
| Winogrande (Acc, 5-shot) | 83.11 | 82.48 | |
|
| **Average Score** | **79.45** | **78.88** | |
|
| **Recovery (%)** | **100.00** | **99.28** | |
|
|
|
#### OpenLLM Leaderboard V2 evaluation scores |
|
|
|
| Metric | mistralai/Mistral-Small-24B-Instruct-2501 | nm-testing/Mistral-Small-24B-Instruct-2501-FP8-dynamic | |
|
|---------------------------------------------------------|:---------------------------------:|:-------------------------------------------:| |
|
| IFEval (Inst-and-Prompt Level Strict Acc, 0-shot) | 73.27 | 73.53 | |
|
| BBH (Acc-Norm, 3-shot) | 45.18 | 44.39 | |
|
| MMLU-Pro (Acc, 5-shot) | 38.83 | 37.28 | |
|
| **Average Score** | **52.42** | **51.73** | |
|
| **Recovery (%)** | **100.00** | **98.68** | |
|
| Math-Hard (Exact-Match, 4-shot) | 6.35 | 2.99 | |
|
| GPQA (Acc-Norm, 0-shot) | 8.29 | 6.97 | |
|
| MUSR (Acc-Norm, 0-shot) | 7.84 | 8.04 | |
|
|
|
Results on Math-Hard, GPQA, and MUSR are not considred for accuracy recovery calculation because the unquantized model has close to random prediction accuracy (6.35, 8.29, 7.84) which doesn't provide a reliable baseline for recovery calculation. |
|
|