Lin-K76's picture
Update README.md
90ff7a0 verified
|
raw
history blame
6.3 kB
---
tags:
- fp8
- vllm
license: apache-2.0
language:
- en
---
# Mistral-Nemo-Instruct-2407-FP8
## Model Overview
- **Model Architecture:** Mistral-Nemo
- **Input:** Text
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** FP8
- **Activation quantization:** FP8
- **Intended Use Cases:** Intended for commercial and research use in English. Similarly to [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct), this models is intended for assistant-like chat.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages other than English.
- **Release Date:** 7/18/2024
- **Version:** 1.0
- **License(s):** [apache-2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md)
- **Model Developers:** Neural Magic
Quantized version of [Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407).
It achieves an average score of 71.28 on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) benchmark (version 1), whereas the unquantized model achieves 71.61.
### Model Optimizations
This model was obtained by quantizing the weights and activations of [Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407) to FP8 data type, ready for inference with vLLM >= 0.5.0.
This optimization reduces the number of bits per parameter from 16 to 8, reducing the disk size and GPU memory requirements by approximately 50%.
Only the weights and activations of the linear operators within transformers blocks are quantized. Symmetric per-tensor quantization is applied, in which a single linear scaling maps the FP8 representations of the quantized weights and activations.
[AutoFP8](https://github.com/neuralmagic/AutoFP8) is used for quantization with 512 sequences of UltraChat.
<!-- ## Deployment
### Use with vLLM
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
model_id = "neuralmagic/Mistral-Nemo-Instruct-2407-FP8"
sampling_params = SamplingParams(temperature=0.6, top_p=0.9, max_tokens=256)
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
{"role": "user", "content": "Who are you?"},
]
prompts = tokenizer.apply_chat_template(messages, tokenize=False)
llm = LLM(model=model_id)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM aslo supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details. -->
## Creation
This model was created by applying [AutoFP8 with calibration samples from ultrachat](https://github.com/neuralmagic/AutoFP8/blob/147fa4d9e1a90ef8a93f96fc7d9c33056ddc017a/example_dataset.py), as presented in the code snipet below.
Although AutoFP8 was used for this particular model, Neural Magic is transitioning to using [llm-compressor](https://github.com/vllm-project/llm-compressor) which supports several quantization schemes and models not supported by AutoFP8.
Note that ```transformers``` must be built from source.
```python
from datasets import load_dataset
from transformers import AutoTokenizer
from auto_fp8 import AutoFP8ForCausalLM, BaseQuantizeConfig
pretrained_model_dir = "mistralai/Mistral-Nemo-Instruct-2407"
quantized_model_dir = "Mistral-Nemo-Instruct-2407-FP8"
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_dir, use_fast=True, model_max_length=4096)
tokenizer.pad_token = tokenizer.eos_token
ds = load_dataset("mgoin/ultrachat_2k", split="train_sft").select(range(512))
examples = [tokenizer.apply_chat_template(batch["messages"], tokenize=False) for batch in ds]
examples = tokenizer(examples, padding=True, truncation=True, return_tensors="pt").to("cuda")
quantize_config = BaseQuantizeConfig(
quant_method="fp8",
activation_scheme="static"
ignore_patterns=["re:.*lm_head"],
)
model = AutoFP8ForCausalLM.from_pretrained(
pretrained_model_dir, quantize_config=quantize_config
)
model.quantize(examples)
model.save_quantized(quantized_model_dir)
```
## Evaluation
The model was evaluated on the [OpenLLM](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) leaderboard tasks (version 1) with the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/383bbd54bc621086e05aa1b030d8d4d5635b25e6) (commit 383bbd54bc621086e05aa1b030d8d4d5635b25e6) and the [vLLM](https://docs.vllm.ai/en/stable/) engine, using the following command.
Note that ```vllm``` must be built from source.
```
lm_eval \
--model vllm \
--model_args pretrained="neuralmagic/Mistral-Nemo-Instruct-2407-FP8",dtype=auto,gpu_memory_utilization=0.4,max_model_len=4096 \
--tasks openllm \
--batch_size auto
```
### Accuracy
#### Open LLM Leaderboard evaluation scores
<table>
<tr>
<td><strong>Benchmark</strong>
</td>
<td><strong>Mistral-Nemo-Instruct-2407 </strong>
</td>
<td><strong>Mistral-Nemo-Instruct-2407-FP8(this model)</strong>
</td>
<td><strong>Recovery</strong>
</td>
</tr>
<tr>
<td>MMLU (5-shot)
</td>
<td>68.35
</td>
<td>68.50
</td>
<td>100.2%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>65.53
</td>
<td>64.68
</td>
<td>98.70%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>74.45
</td>
<td>73.01
</td>
<td>98.06%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>84.32
</td>
<td>84.18
</td>
<td>99.83%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>82.16
</td>
<td>82.32
</td>
<td>100.1%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot)
</td>
<td>54.85
</td>
<td>54.96
</td>
<td>100.2%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>71.61</strong>
</td>
<td><strong>71.28</strong>
</td>
<td><strong>99.53%</strong>
</td>
</tr>
</table>