File size: 1,745 Bytes
c3a942f c2a2cb9 c3a942f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
from QBModelWrapperCopy import QBModelWrapper
from QBModelConfig import QBModelConfig
from QBpipeline import QApipeline
from transformers.pipelines import PIPELINE_REGISTRY
from transformers import AutoModelForQuestionAnswering, TFAutoModelForQuestionAnswering
from transformers import pipeline
from transformers import AutoConfig, AutoModel, AutoModelForQuestionAnswering, TFAutoModel
config = QBModelConfig()
qb_model = QBModelWrapper(config)
# qa_pipe = QApipeline(model=qb_model)
AutoConfig.register("QA-umd-quizbowl", QBModelConfig)
AutoModel.register(QBModelConfig, QBModelWrapper)
AutoModelForQuestionAnswering.register(QBModelConfig, QBModelWrapper)
# TFAutoModel.register(QBModelConfig, QBModelWrapper)
# TFAutoModelForQuestionAnswering(QBModelConfig, QBModelWrapper)
QBModelConfig.register_for_auto_class()
QBModelWrapper.register_for_auto_class("AutoModel")
QBModelWrapper.register_for_auto_class("AutoModelForQuestionAnswering")
# result = qa_pipe(question="This star in the solar system has 8 planets", context="Context for the question")
# print(result["answer"])
PIPELINE_REGISTRY.register_pipeline(
"qa-pipeline-qb",
pipeline_class=QApipeline,
pt_model=AutoModelForQuestionAnswering,
tf_model=TFAutoModelForQuestionAnswering,
# pt_model=AutoModel,
# tf_model=TFAutoModel
)
qa_pipe = pipeline("qa-pipeline-qb", model=qb_model)
#qa_pipe.push_to_hub("new-attempt-pipeline-2", safe_serialization=False)
qa_pipe.save_pretrained("main", safe_serialization=False)
result = qa_pipe(question="This star in the solar system has 8 planets", context="Context for the question")
print(result["answer"])
#if still doesnt work then try making custom pipeline that inherits from QuestionAnsweringPipeline
|