nemik's picture
Upload processor
c83e039 verified
metadata
base_model: apple/mobilevitv2-1.0-imagenet1k-256
datasets:
  - webdataset
license: other
metrics:
  - accuracy
  - f1
  - precision
  - recall
tags:
  - generated_from_trainer
model-index:
  - name: mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-7-25-frost
    results:
      - task:
          type: image-classification
          name: Image Classification
        dataset:
          name: webdataset
          type: webdataset
          config: default
          split: train
          args: default
        metrics:
          - type: accuracy
            value: 0.9309734513274336
            name: Accuracy
          - type: f1
            value: 0.8227272727272726
            name: F1
          - type: precision
            value: 0.8457943925233645
            name: Precision
          - type: recall
            value: 0.8008849557522124
            name: Recall

mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-7-25-frost

This model is a fine-tuned version of apple/mobilevitv2-1.0-imagenet1k-256 on the webdataset dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1896
  • Accuracy: 0.9310
  • F1: 0.8227
  • Precision: 0.8458
  • Recall: 0.8009

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6687 1.5625 100 0.6623 0.7230 0.5335 0.4022 0.7920
0.4454 3.125 200 0.4152 0.8832 0.7490 0.6567 0.8717
0.2835 4.6875 300 0.2661 0.9097 0.7661 0.7952 0.7389
0.2197 6.25 400 0.2151 0.9195 0.7869 0.8358 0.7434
0.1613 7.8125 500 0.2007 0.9292 0.8140 0.8578 0.7743
0.1655 9.375 600 0.1935 0.9310 0.8227 0.8458 0.8009
0.1815 10.9375 700 0.1883 0.9265 0.8074 0.8488 0.7699
0.1316 12.5 800 0.1825 0.9327 0.8273 0.8505 0.8053
0.1612 14.0625 900 0.1837 0.9257 0.8100 0.8287 0.7920
0.118 15.625 1000 0.1896 0.9310 0.8227 0.8458 0.8009
0.1178 17.1875 1100 0.1937 0.9239 0.8028 0.8333 0.7743
0.1248 18.75 1200 0.1913 0.9301 0.8192 0.8483 0.7920
0.1169 20.3125 1300 0.1916 0.9301 0.8167 0.8585 0.7788
0.1094 21.875 1400 0.1925 0.9292 0.8182 0.8411 0.7965
0.1108 23.4375 1500 0.1961 0.9345 0.8333 0.8486 0.8186
0.1089 25.0 1600 0.1993 0.9283 0.8172 0.8341 0.8009
0.0919 26.5625 1700 0.1936 0.9319 0.8262 0.8433 0.8097
0.0969 28.125 1800 0.1978 0.9310 0.8227 0.8458 0.8009
0.1093 29.6875 1900 0.1955 0.9283 0.8172 0.8341 0.8009

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1