metadata
base_model: apple/mobilevitv2-1.0-imagenet1k-256
datasets:
- webdataset
license: other
metrics:
- accuracy
- f1
- precision
- recall
tags:
- generated_from_trainer
model-index:
- name: mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-7-25-frost
results:
- task:
type: image-classification
name: Image Classification
dataset:
name: webdataset
type: webdataset
config: default
split: train
args: default
metrics:
- type: accuracy
value: 0.9309734513274336
name: Accuracy
- type: f1
value: 0.8227272727272726
name: F1
- type: precision
value: 0.8457943925233645
name: Precision
- type: recall
value: 0.8008849557522124
name: Recall
mobilevitv2-1.0-imagenet1k-256-finetuned_v2024-7-25-frost
This model is a fine-tuned version of apple/mobilevitv2-1.0-imagenet1k-256 on the webdataset dataset. It achieves the following results on the evaluation set:
- Loss: 0.1896
- Accuracy: 0.9310
- F1: 0.8227
- Precision: 0.8458
- Recall: 0.8009
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 30
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
---|---|---|---|---|---|---|---|
0.6687 | 1.5625 | 100 | 0.6623 | 0.7230 | 0.5335 | 0.4022 | 0.7920 |
0.4454 | 3.125 | 200 | 0.4152 | 0.8832 | 0.7490 | 0.6567 | 0.8717 |
0.2835 | 4.6875 | 300 | 0.2661 | 0.9097 | 0.7661 | 0.7952 | 0.7389 |
0.2197 | 6.25 | 400 | 0.2151 | 0.9195 | 0.7869 | 0.8358 | 0.7434 |
0.1613 | 7.8125 | 500 | 0.2007 | 0.9292 | 0.8140 | 0.8578 | 0.7743 |
0.1655 | 9.375 | 600 | 0.1935 | 0.9310 | 0.8227 | 0.8458 | 0.8009 |
0.1815 | 10.9375 | 700 | 0.1883 | 0.9265 | 0.8074 | 0.8488 | 0.7699 |
0.1316 | 12.5 | 800 | 0.1825 | 0.9327 | 0.8273 | 0.8505 | 0.8053 |
0.1612 | 14.0625 | 900 | 0.1837 | 0.9257 | 0.8100 | 0.8287 | 0.7920 |
0.118 | 15.625 | 1000 | 0.1896 | 0.9310 | 0.8227 | 0.8458 | 0.8009 |
0.1178 | 17.1875 | 1100 | 0.1937 | 0.9239 | 0.8028 | 0.8333 | 0.7743 |
0.1248 | 18.75 | 1200 | 0.1913 | 0.9301 | 0.8192 | 0.8483 | 0.7920 |
0.1169 | 20.3125 | 1300 | 0.1916 | 0.9301 | 0.8167 | 0.8585 | 0.7788 |
0.1094 | 21.875 | 1400 | 0.1925 | 0.9292 | 0.8182 | 0.8411 | 0.7965 |
0.1108 | 23.4375 | 1500 | 0.1961 | 0.9345 | 0.8333 | 0.8486 | 0.8186 |
0.1089 | 25.0 | 1600 | 0.1993 | 0.9283 | 0.8172 | 0.8341 | 0.8009 |
0.0919 | 26.5625 | 1700 | 0.1936 | 0.9319 | 0.8262 | 0.8433 | 0.8097 |
0.0969 | 28.125 | 1800 | 0.1978 | 0.9310 | 0.8227 | 0.8458 | 0.8009 |
0.1093 | 29.6875 | 1900 | 0.1955 | 0.9283 | 0.8172 | 0.8341 | 0.8009 |
Framework versions
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1