File size: 2,033 Bytes
354fe42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- super_glue
metrics:
- rouge
model-index:
- name: T5_finetuned
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: super_glue
type: super_glue
config: boolq
split: train
args: boolq
metrics:
- name: Rouge1
type: rouge
value: 79.3272
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# T5_finetuned
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the super_glue dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1077
- Rouge1: 79.3272
- Rouge2: 0.0
- Rougel: 79.2966
- Rougelsum: 79.3272
- Gen Len: 2.8269
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:------:|:-------:|:---------:|:-------:|
| 0.5134 | 1.0 | 590 | 0.1102 | 79.8165 | 0.0 | 79.8165 | 79.8471 | 2.7713 |
| 0.105 | 2.0 | 1180 | 0.1049 | 80.3364 | 0.0 | 80.3364 | 80.367 | 2.6483 |
| 0.1023 | 3.0 | 1770 | 0.1077 | 79.3272 | 0.0 | 79.2966 | 79.3272 | 2.8269 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.13.0+cu116
- Datasets 2.8.0
- Tokenizers 0.13.2
|