File size: 7,252 Bytes
66f03ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
language:
- en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- tomaarsen/ner-orgs
metrics:
- precision
- recall
- f1
widget:
- text: De Napoli played for FC Luzern in the second half of the 2005–06 Swiss Super
League campaign, scoring five times in fifteen games and helping Luzern to promotion
from the Swiss Challenge League.
- text: The issue continued to simmer while full-communion agreements with the Presbyterian
Church USA, Reformed Church in America, United Church of Christ, and Episcopal
Church (United States) were debated and adopted in 1997 and 1999.
- text: Rune Gerhardsen (born 13 June 1946) is a Norwegian politician, representing
the Norwegian Labour Party and a former sports leader at Norwegian Skating Association
representing from Aktiv SK.
- text: Konstantin Vladimirovich Pushkaryov (; born February 12, 1985) is a Kazakhstani
professional ice hockey winger who is currently playing with HK Kurbads of the
Latvian Hockey League (LAT).
- text: SCL claims that its methodology has been approved or endorsed by agencies
of the Government of the United Kingdom and the Federal government of the United
States, among others.
pipeline_tag: token-classification
base_model: microsoft/xtremedistil-l12-h384-uncased
model-index:
- name: SpanMarker with microsoft/xtremedistil-l12-h384-uncased on FewNERD, CoNLL2003,
and OntoNotes v5
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: FewNERD, CoNLL2003, and OntoNotes v5
type: tomaarsen/ner-orgs
split: test
metrics:
- type: f1
value: 0.7558602090122487
name: F1
- type: precision
value: 0.7620428694430598
name: Precision
- type: recall
value: 0.749777064383806
name: Recall
---
# SpanMarker with microsoft/xtremedistil-l12-h384-uncased on FewNERD, CoNLL2003, and OntoNotes v5
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD, CoNLL2003, and OntoNotes v5](https://huggingface.co/datasets/tomaarsen/ner-orgs) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [microsoft/xtremedistil-l12-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l12-h384-uncased) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [microsoft/xtremedistil-l12-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l12-h384-uncased)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [FewNERD, CoNLL2003, and OntoNotes v5](https://huggingface.co/datasets/tomaarsen/ner-orgs)
- **Language:** en
- **License:** cc-by-sa-4.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------|
| ORG | "Texas Chicken", "IAEA", "Church 's Chicken" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:--------|:----------|:-------|:-------|
| **all** | 0.7620 | 0.7498 | 0.7559 |
| ORG | 0.7620 | 0.7498 | 0.7559 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("nbroad/span-marker-xdistil-l12-h384-orgs-v3")
# Run inference
entities = model.predict("SCL claims that its methodology has been approved or endorsed by agencies of the Government of the United Kingdom and the Federal government of the United States, among others.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("nbroad/span-marker-xdistil-l12-h384-orgs-v3")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("nbroad/span-marker-xdistil-l12-h384-orgs-v3-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 23.5706 | 263 |
| Entities per sentence | 0 | 0.7865 | 39 |
### Training Hyperparameters
- learning_rate: 0.0003
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.5720 | 600 | 0.0086 | 0.7150 | 0.7095 | 0.7122 | 0.9660 |
| 1.1439 | 1200 | 0.0074 | 0.7556 | 0.7253 | 0.7401 | 0.9682 |
| 1.7159 | 1800 | 0.0073 | 0.7482 | 0.7619 | 0.7550 | 0.9702 |
| 2.2879 | 2400 | 0.0072 | 0.7761 | 0.7573 | 0.7666 | 0.9713 |
| 2.8599 | 3000 | 0.0070 | 0.7691 | 0.7688 | 0.7689 | 0.9720 |
### Framework Versions
- Python: 3.10.12
- SpanMarker: 1.5.0
- Transformers: 4.35.2
- PyTorch: 2.1.0a0+32f93b1
- Datasets: 2.15.0
- Tokenizers: 0.15.0
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |