|
# Multi-lingual Question Generating Model (mt5-base) |
|
Give the model a passage and it will generate a question about the passage. |
|
|
|
## Trained on the following datasets: |
|
|
|
- [SQuAD (English)](https://rajpurkar.github.io/SQuAD-explorer/) |
|
- [TyDiQA-GoldP (Arabic, Bengali, Finnish, Japanese, Indonesian, Kiswahili, Korean, Russian, Telugu, Thai)](https://github.com/google-research-datasets/tydiqa) |
|
- [MLQA (Arabic, Chinese, English, German, Hindi, Spanish, Vietnames)](https://github.com/facebookresearch/MLQA) |
|
- [XQuAD (Arabic, Chinese, German, Greek, Hindi, Russian, Spanish, Thai, Turkish Vietnamese)](https://github.com/deepmind/xquad) |
|
- [GermanQuAD (German)](https://huggingface.co/datasets/deepset/germanquad) |
|
- [Persian QA (Persian)](https://www.kaggle.com/sajjadayobi360/persianqa) |
|
- [Bengali QA (Bengali)](https://www.kaggle.com/mayeesha/bengali-question-answering-dataset) |
|
- [chaii (Hindi, Tamil)](https://www.kaggle.com/c/chaii-hindi-and-tamil-question-answering/data) |
|
|
|
|
|
## Training details |
|
I used [flax summarization script](https://github.com/huggingface/transformers/tree/master/examples/flax/summarization) and a TPU v3-8. Summarization expects a text column and a summary column. For question generation training, use the context column instead of text column and question instead of summary column. |
|
|
|
|
|
There is no guarantee that it will produce a question in the language of the passage, but it usually does. Lower resource languages will likely have lower quality questions. |
|
|
|
|
|
## Using the model |
|
|
|
#### PyTorch version |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("nbroad/mt5-base-qgen") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("nbroad/mt5-base-qgen", from_flax=True) |
|
|
|
text = "Hugging Face has seen rapid growth in its \ |
|
popularity since the get-go. It is definitely doing\ |
|
the right things to attract more and more people to \ |
|
its platform, some of which are on the following lines:\ |
|
Community driven approach through large open source repositories \ |
|
along with paid services. Helps to build a network of like-minded\ |
|
people passionate about open source. \ |
|
Attractive price point. The subscription-based features, e.g.: \ |
|
Inference based API, starts at a price of $9/month.\ |
|
" |
|
|
|
inputs = tokenizer(text, return_tensors="pt") |
|
output = model.generate(**inputs, max_length=40) |
|
|
|
tokenizer.decode(output[0], skip_special_tokens=True) |
|
# What is Hugging Face's price point? |
|
``` |
|
|
|
#### Flax version |
|
```python |
|
from transformers import AutoTokenizer, FlaxAutoModelForSeq2SeqLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("nbroad/mt5-base-qgen") |
|
model = FlaxAutoModelForSeq2SeqLM.from_pretrained("nbroad/mt5-base-qgen") |
|
|
|
text = "A un año y tres días de que el balón ruede \ |
|
en el Al Bayt Stadium inaugurando el Mundial 2022, \ |
|
ya se han dibujado los primeros bocetos de la próxima \ |
|
Copa del Mundo.13 selecciones están colocadas en el \ |
|
mapa con la etiqueta de clasificadas y tienen asegurado\ |
|
pisar los verdes de Qatar en la primera fase final \ |
|
otoñal. Serbia, Dinamarca, España, Países Bajos, \ |
|
Suiza, Croacia, Francia, Inglaterra, Bélgica, Alemania,\ |
|
Brasil, Argentina y Qatar, como anfitriona, entrarán en \ |
|
el sorteo del 1 de abril de 2022 en Doha en el que 32 \ |
|
países serán repartidos en sus respectivos grupos. \ |
|
" |
|
|
|
inputs = tokenizer(text, return_tensors="pt") |
|
output = model.generate(**inputs, max_length=40) |
|
|
|
tokenizer.decode(output["sequences"][0], skip_special_tokens=True) |
|
# ¿Cuántos países entrarán en el sorteo del Mundial 2022? |
|
``` |
|
|
|
|
|
Model trained on Cloud TPUs from Google's TPU Research Cloud (TRC) |