navradio's picture
update model card README.md
b89b5ff
|
raw
history blame
3.63 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swin-tiny-patch4-window7-224-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7302889760970389

swin-tiny-patch4-window7-224-finetuned-eurosat

This model is a fine-tuned version of microsoft/swin-tiny-patch4-window7-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5574
  • Accuracy: 0.7303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 1024
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.6271 0.99 98 0.6035 0.6926
0.6156 1.99 197 0.5844 0.7006
0.6148 3.0 296 0.5758 0.7104
0.6055 4.0 395 0.5853 0.7015
0.5938 4.99 493 0.5858 0.7104
0.5878 5.99 592 0.5630 0.7210
0.5873 7.0 691 0.5620 0.7236
0.5947 8.0 790 0.5670 0.7196
0.5866 8.99 888 0.5592 0.7265
0.5807 9.99 987 0.5574 0.7254
0.5764 11.0 1086 0.5655 0.7245
0.5729 12.0 1185 0.5611 0.7237
0.577 12.99 1283 0.5702 0.7189
0.5702 13.99 1382 0.5588 0.7259
0.5717 15.0 1481 0.5565 0.7244
0.5646 16.0 1580 0.5536 0.7303
0.5591 16.99 1678 0.5525 0.7345
0.5586 17.99 1777 0.5565 0.7286
0.5668 19.0 1876 0.5520 0.7304
0.5617 20.0 1975 0.5557 0.7289
0.5546 20.99 2073 0.5561 0.7325
0.5579 21.99 2172 0.5537 0.7314
0.5604 23.0 2271 0.5545 0.7290
0.5563 24.0 2370 0.5591 0.7288
0.5634 24.99 2468 0.5546 0.7307
0.5563 25.99 2567 0.5557 0.7303
0.5563 27.0 2666 0.5571 0.7276
0.5544 28.0 2765 0.5551 0.7298
0.5491 28.99 2863 0.5596 0.7282
0.5461 29.77 2940 0.5574 0.7303

Framework versions

  • Transformers 4.29.1
  • Pytorch 2.0.1
  • Datasets 2.13.1
  • Tokenizers 0.13.3