File size: 18,678 Bytes
1828e27 e8b7135 1828e27 7a69bce 1828e27 30d70a0 0aef913 1828e27 8051da9 1828e27 8051da9 30d70a0 8051da9 30d70a0 8051da9 bbb1f20 8051da9 1828e27 c91f0bf 8051da9 0aef913 8051da9 1828e27 8051da9 1828e27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import string
from typing import Optional, Union, Tuple, List
from dataclasses import dataclass
from tqdm import tqdm
import warnings
import nltk
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import Dataset
from torch.nn.utils.rnn import pad_sequence
from transformers import AutoTokenizer
from transformers import DebertaV2PreTrainedModel, DebertaV2Model, PretrainedConfig
try:
from transformers.models.deberta_v2.modeling_deberta_v2 import (
StableDropout,
ContextPooler,
)
except ImportError:
from transformers.models.deberta_v2.modeling_deberta_v2 import ContextPooler
StableDropout = nn.Dropout
from transformers.modeling_outputs import ModelOutput
@dataclass
class RankingCompressionOutput(ModelOutput):
compression_logits: torch.FloatTensor = None
ranking_scores: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
"""adapted from https://github.com/huggingface/transformers/blob/v4.44.2/src/transformers/models/deberta_v2/modeling_deberta_v2.py#L1357
"""
class ProvenceConfig(PretrainedConfig):
model_type = "Provence"
def __init__(self, **kwargs):
super().__init__(**kwargs)
class Provence(DebertaV2PreTrainedModel):
config_class = ProvenceConfig
def __init__(self, config):
super().__init__(config)
num_labels = getattr(config, "num_labels", 2)
self.num_labels = num_labels
self.deberta = DebertaV2Model(config)
self.pooler = ContextPooler(config)
output_dim = self.pooler.output_dim
### RANKING LAYER
self.classifier = nn.Linear(output_dim, num_labels)
drop_out = getattr(config, "cls_dropout", None)
drop_out = self.config.hidden_dropout_prob if drop_out is None else drop_out
self.dropout = StableDropout(drop_out)
### COMPRESSION LAYER: another head
token_dropout = drop_out
self.token_dropout = nn.Dropout(token_dropout)
self.token_classifier = nn.Linear(
config.hidden_size, 2
) # => hard coded number of labels
self.name = "Provence"
self.tokenizer = AutoTokenizer.from_pretrained(config._name_or_path)
self.max_len = config.max_position_embeddings
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.FloatTensor] = None,
) -> RankingCompressionOutput:
outputs = self.deberta(
input_ids,
attention_mask=attention_mask,
)
encoder_layer = outputs[0]
pooled_output = self.pooler(encoder_layer)
pooled_output = self.dropout(pooled_output)
ranking_logits = self.classifier(pooled_output)
compression_logits = self.token_classifier(self.token_dropout(encoder_layer))
ranking_scores = ranking_logits[
:, 0
].squeeze() # select first dim of logits for ranking scores
return RankingCompressionOutput(
compression_logits=compression_logits,
ranking_scores=ranking_scores,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def process(
self,
question: Union[List[str], str],
context: Union[List[List[str]], str],
title: Optional[Union[List[List[str]], str]] = "first_sentence",
batch_size=32,
threshold=0.1,
always_select_title=False,
reorder=False,
top_k=5,
enable_warnings=True,
):
# convert input format into queries of type List[str] and contexts/titles of type List[List[str]]
if type(question) == str:
queries = [question]
else: # list of strs
queries = question
if type(context) == str:
contexts = [[context]]
else:
contexts = context
if type(title) == str and title != "first_sentence":
titles = [[title]]
else:
titles = title
assert (
titles == "first_sentence"
or titles == None
or type(titles) == list
and len(titles) == len(queries)
), "Variable 'titles' must be 'first_sentence' or a list of strings of the same length as 'queries'"
if type(titles) == list:
assert all(
[
len(titles_item) == len(contexts_item)
for titles_item, contexts_item in zip(contexts, titles)
]
), "Each list in 'titles' must have the same length as the corresponding list in 'context'"
assert len(queries) == len(
contexts
), "Lists 'queries' and 'contexts' must have same lengths"
dataset = TestDataset(
queries=queries,
contexts=contexts,
titles=titles,
tokenizer=self.tokenizer,
max_len=self.max_len,
enable_warnings=enable_warnings,
)
selected_contexts = [
[{0: contexts[i][j]} for j in range(len(contexts[i]))]
for i in range(len(queries))
]
reranking_scores = [
[None for j in range(len(contexts[i]))] for i in range(len(queries))
]
with torch.no_grad():
for batch_start in tqdm(
range(0, len(dataset), batch_size), desc="Pruning contexts..."
):
qis = dataset.qis[batch_start : batch_start + batch_size]
cis = dataset.cis[batch_start : batch_start + batch_size]
sis = dataset.sis[batch_start : batch_start + batch_size]
sent_coords = dataset.sent_coords[
batch_start : batch_start + batch_size
]
ids_list = dataset.ids[batch_start : batch_start + batch_size]
ids = pad_sequence(
ids_list, batch_first=True, padding_value=dataset.pad_idx
).to(self.device)
mask = (ids != dataset.pad_idx).to(self.device)
outputs = self.forward(ids, mask)
scores = F.softmax(outputs["compression_logits"].cpu(), dim=-1)[:, :, 1]
token_preds = scores > threshold
reranking_scrs = (
outputs["ranking_scores"].cpu().numpy()
) # get first score
if len(reranking_scrs.shape) == 0:
reranking_scrs = reranking_scrs[None]
for (
ids_list_,
token_preds_,
rerank_score,
qi,
ci,
si,
sent_coords_,
) in zip(
ids_list, token_preds, reranking_scrs, qis, cis, sis, sent_coords
):
selected_mask = sentence_rounding(
token_preds_.cpu().numpy(),
np.array(sent_coords_),
threshold=threshold,
always_select_title=always_select_title
and si == 0
and titles != None,
)
assert len(selected_mask) == len(token_preds_)
selected_contexts[qi][ci][si] = ids_list_[
selected_mask[: len(ids_list_)]
]
if si == 0:
reranking_scores[qi][ci] = rerank_score
for i in range(len(queries)):
for j in range(len(contexts[i])):
if type(selected_contexts[i][j][0]) != str:
toks = torch.cat(
[
ids_
for _, ids_ in sorted(
selected_contexts[i][j].items(), key=lambda x: x[0]
)
]
)
selected_contexts[i][j] = self.tokenizer.decode(
toks,
skip_special_tokens=True,
clean_up_tokenization_spaces=False,
)
else:
selected_contexts[i][j] = selected_contexts[i][j][0]
if reorder:
idxs = np.argsort(reranking_scores[i])[::-1][:top_k]
selected_contexts[i] = [selected_contexts[i][j] for j in idxs]
reranking_scores[i] = [reranking_scores[i][j] for j in idxs]
if type(context) == str:
selected_contexts = selected_contexts[0][0]
reranking_scores = reranking_scores[0][0]
return {
"pruned_context": selected_contexts,
"reranking_score": reranking_scores
}
# Some utils functions
def sentence_rounding(predictions, chunks, threshold, always_select_title=True):
"""
predictions: a binary vector containing 1 for tokens which were selected and 0s otherwise
chunks: a list of pairs [start, end] of sentence, i.e. sentence is in coordinates predictions[start:end]
the functions
"""
cumulative_sum = np.cumsum(predictions)
chunk_sums = cumulative_sum[chunks[:, 1] - 1] - np.where(
chunks[:, 0] > 0, cumulative_sum[chunks[:, 0] - 1], 0
)
chunk_lengths = chunks[:, 1] - chunks[:, 0]
chunk_means = chunk_sums / chunk_lengths
if always_select_title and (chunk_means>threshold).any():
chunk_means[0] = 1
means = np.hstack((np.zeros(1), chunk_means, np.zeros(1)))
repeats = np.hstack(
([chunks[0][0]], chunk_lengths, [predictions.shape[0] - chunks[-1][1]])
)
return np.repeat(means, repeats) > threshold
def normalize(s: str) -> str:
def white_space_fix(text):
return " ".join(text.split())
def remove_punc(text):
exclude = set(string.punctuation)
return "".join(ch for ch in text if ch not in exclude)
def lower(text):
return text.lower()
return white_space_fix(remove_punc(lower(s)))
def sent_split_and_tokenize(text, tokenizer, max_len):
sents_nltk = nltk.sent_tokenize(text)
sents = []
for j, sent_nltk in enumerate(sents_nltk):
tokinput = (" " if j != 0 else "") + sent_nltk
tok = tokenizer.encode(tokinput, add_special_tokens=False)
ltok = len(tok)
if ltok == 0:
continue
if ltok <= max_len:
sents.append(tok)
else:
for begin in range(0, ltok, max_len):
sents.append(tok[begin : begin + max_len])
return sents
class TestDataset(Dataset):
def __init__(
self,
queries,
contexts,
tokenizer,
max_len=512,
titles="first_sentence",
enable_warnings=True,
):
self.tokenizer = tokenizer
self.max_len = max_len
self.pad_idx = 0
self.cls_idx = [1]
self.sep_idx = [2]
self.eos = [2]
# hardcoded deberta-specific indexes
self.nb_spe_tok = len(self.cls_idx) + len(self.sep_idx)
self.enable_warnings = enable_warnings
self.unusual_query_length = (
self.max_len // 2
) # TODO: change to data-driven value
self.unusual_title_len = self.max_len // 2 # TODO: change to data-driven value
self.create_dataset(contexts, queries, titles)
self.len = len(self.cis)
def create_dataset(self, contexts, queries, titles="first_sentence"):
self.qis = []
self.cis = []
self.sis = []
self.sent_coords = []
self.cntx_coords = []
self.ids = []
if self.enable_warnings:
warnings_dict = {
"zero_len_query": set(),
"too_long_query": set(),
"unusually_long_query": set(),
"unusually_long_title": set(),
"split_context": set(),
}
for i, query in enumerate(queries):
tokenized_query = self.tokenizer.encode(
normalize(query), add_special_tokens=False
)
# normalize query because all training data has normalized queries
query_len = len(tokenized_query)
if query_len == 0:
if self.enable_warnings:
warnings_dict["zero_len_query"].add(i)
continue
elif query_len >= self.max_len - self.nb_spe_tok - 1: # -1 for eos
if self.enable_warnings:
warnings_dict["too_long_query"].add(i)
continue
elif query_len >= self.unusual_query_length:
if self.enable_warnings:
warnings_dict["unusually_long_query"].add(i)
left_0 = len(tokenized_query) + self.nb_spe_tok
tokenized_seq_0 = self.cls_idx + tokenized_query + self.sep_idx
max_len = self.max_len - left_0 - 1
for j, cntx in enumerate(contexts[i]):
title = titles[i][j] if type(titles) == list else titles
tokenized_sents = sent_split_and_tokenize(cntx, self.tokenizer, max_len)
# each (sent + query + special tokens) <= max_len
if title is not None and title != "first_sentence":
tokenized_title = self.tokenizer.encode(
title, add_special_tokens=False
)
ltok = len(tokenized_title)
if ltok == 0:
pass
elif ltok <= max_len:
tokenized_sents = [tokenized_title] + tokenized_sents
else:
if self.enable_warnings and ltok >= self.unusual_title_len:
warnings_dict["unusually_long_title"].add(i)
tokenized_sents = [
tokenized_title[begin : begin + max_len]
for begin in range(0, ltok, max_len)
] + tokenized_sents
tokenized_seq = tokenized_seq_0
left = left_0
sent_coords = []
block = 0
for idx, tokenized_sent in enumerate(tokenized_sents):
l = len(tokenized_sent)
if left + l <= self.max_len - 1:
sent_coords.append([left, left + l])
tokenized_seq = tokenized_seq + tokenized_sent
left += l
else:
if self.enable_warnings:
warnings_dict["split_context"].add(i)
if len(tokenized_seq) > left_0:
tokenized_seq = tokenized_seq + self.eos
self.qis.append(i)
self.cis.append(j)
self.sis.append(block)
self.sent_coords.append(sent_coords)
self.cntx_coords.append(
[sent_coords[0][0], sent_coords[-1][1]]
)
self.ids.append(torch.tensor(tokenized_seq))
tokenized_seq = tokenized_seq_0 + tokenized_sent
sent_coords = [[left_0, left_0 + l]]
left = left_0 + l
block += 1
if len(tokenized_seq) > left_0:
tokenized_seq = tokenized_seq + self.eos
self.qis.append(i)
self.cis.append(j)
self.sis.append(block)
self.sent_coords.append(sent_coords)
self.cntx_coords.append([sent_coords[0][0], sent_coords[-1][1]])
self.ids.append(torch.tensor(tokenized_seq))
if self.enable_warnings:
self.print_warnings(warnings_dict, len(queries))
def __len__(self):
return len(self.ids)
def print_warnings(self, warnings_dict, N):
n = len(warnings_dict["zero_len_query"])
info = " You can suppress Provence warnings by setting enable_warnings=False."
if n > 0:
ex = list(warnings_dict["zero_len_query"])[:10]
warnings.warn(
f"{n} out of {N} queries have zero length, e.g. at indexes {ex}. "
"These examples will be skipped in context pruning, "
"their contexts will be kept as is." + info
)
n = len(warnings_dict["too_long_query"])
if n > 0:
ex = list(warnings_dict["too_long_query"])[:10]
warnings.warn(
f"{n} out of {N} queries are too long for context length {self.max_len}, "
f"e.g. at indexes {ex}. These examples will be skipped in context pruning, "
"their contexts will be kept as is." + info
)
n = len(warnings_dict["unusually_long_query"])
if n > 0:
ex = list(warnings_dict["unusually_long_query"])[:10]
warnings.warn(
f"{n} out of {N} queries are longer than {self.unusual_query_length} tokens, "
f"e.g. at indexes {ex}. These examples will processed as usual in context pruning, "
"but the quality of context pruning could be reduced." + info
)
n = len(warnings_dict["unusually_long_title"])
if n > 0:
ex = list(warnings_dict["unusually_long_title"])[:10]
warnings.warn(
f"{n} out of {N} titles are longer than {self.unusual_title_length} tokens, "
f"e.g. at indexes {ex}. These examples will processed as usual in context pruning, "
"but the quality of context pruning could be reduced." + info
)
n = len(warnings_dict["split_context"])
if n > 0:
ex = list(warnings_dict["split_context"])[:10]
warnings.warn(
f"{n} out of {N} contexts were split into several pieces for context pruning, "
f"due to a limited context length of Provence which is equal to {self.max_len}. "
"This could potentially reduce the quality of context pruning. "
"You could consider checking and reducing lengths of contexts, queries, or titles."
+ info
)
|