File size: 15,551 Bytes
b379974 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, PreTrainedModel, PretrainedConfig, AutoModel
import torch
import math
from peft import get_peft_model, LoraConfig, TaskType
import os
def freeze_model(model):
for param in model.parameters():
param.requires_grad = False
class BERT_Compressor(torch.nn.Module):
def __init__(self, compr_model_name, compr_rate, compr_linear_type, decoder_hidden_size):
super().__init__()
# init model
self.model_name = compr_model_name # base model name of BERT; example: bert-base-ucased
self.model = AutoModel.from_pretrained(compr_model_name, torch_dtype=torch.bfloat16)
self.tokenizer = AutoTokenizer.from_pretrained(compr_model_name, use_fast=True)
self.compr_rate = compr_rate # compression rate
self.compressing_mode = compr_linear_type # linear layer type, could be either concat or mean.
if self.compressing_mode == 'concat': # default setting in paper
self.linear = torch.nn.Linear(self.model.config.hidden_size*self.compr_rate, decoder_hidden_size)
elif self.compressing_mode == 'mean':
self.linear = torch.nn.Linear(self.model.config.hidden_size, decoder_hidden_size)
self.linear = self.linear.bfloat16()
def forward(self, input_ids, attention_mask):
# compressing context using BERT
segment_compress_outputs = self.model(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True)
num_embs = math.ceil(input_ids.size(1) / self.compr_rate)
all_hidden_states_emb = list()
if self.compressing_mode == 'concat':
for segment_idx in range(num_embs):
start_idx = segment_idx * self.compr_rate
end_idx = (segment_idx + 1) * self.compr_rate
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
hidden_state_concat = torch.flatten(hidden_state, start_dim=1) #batch_size, hidden_state_dim * compression_rate
all_hidden_states_emb.append(hidden_state_concat)
elif self.compressing_mode == "mean":
for segment_idx in range(num_embs):
start_idx = segment_idx * self.compr_rate
end_idx = (segment_idx + 1) * self.compr_rate
hidden_state = segment_compress_outputs.hidden_states[-1][:, start_idx:end_idx, :]
# Apply mean pooling to get the final embedding for the segment
all_hidden_states_emb.append(hidden_state)
else:
raise NotImplementedError()
all_hidden_states_emb_cat = torch.stack(all_hidden_states_emb, dim=1)
transformed_embeds = self.linear(all_hidden_states_emb_cat)
if self.compressing_mode == "mean":
transformed_embeds = torch.mean(transformed_embeds, dim=2)
# dimention of transformed_embeds: (batch_size*generation_top_k, num_embs, decoder_hidden_size)
return transformed_embeds
class COCOMConfig(PretrainedConfig):
model_type = "COCOM"
def __init__(self,
decoder_model_name="meta-llama/Llama-2-7b-chat-hf",
quantization = 'no',
generation_top_k = 1,
sep = False,
compr_model_name = "bert-base-uncased",
compr_rate = 64,
compr_linear_type = 'concat',
lora = False,
training_form="both",
lora_r=16,
**kwargs):
super().__init__(**kwargs)
self.decoder_model_name = decoder_model_name # model name of decoder
self.quantization = quantization # quantization, could be no, int4, int8
self.generation_top_k = generation_top_k # top k for each query, for pretraining, set to 1
self.sep = sep # boolean type, whether to use sep token
self.compr_model_name = compr_model_name # model name of compressor
self.compr_rate = compr_rate # compression rate
self.compr_linear_type = compr_linear_type # linear layer type, could be either concat or mean
self.lora = lora # boolean type, whether to use lora trsining
self.training_form = training_form # training form, could be compressor: training only comprssor; both:
self.lora_r = lora_r # lora_r for lora training, we use 16 throughout the experiment.
class COCOM(PreTrainedModel):
config_class = COCOMConfig
def __init__(self, cfg):
super().__init__(cfg)
# define models
# model could be loaded in three quantization modes: no, int4, int8
if cfg.quantization == "no":
self.decoder = AutoModelForCausalLM.from_pretrained(
cfg.decoder_model_name,
torch_dtype=torch.bfloat16,
attn_implementation="flash_attention_2",
low_cpu_mem_usage = True,
)
elif cfg.quantization == "int4":
quant_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type='nf4',
bnb_4bit_compute_dtype='bfloat16',
low_cpu_mem_usage = True,
)
self.decoder = AutoModelForCausalLM.from_pretrained(
cfg.decoder_model_name,
quantization_config=quant_config,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
resume_download=True,
low_cpu_mem_usage = True,
trust_remote_code=True,
)
elif cfg.quantization == "int8":
quant_config = BitsAndBytesConfig(
load_in_8bit=True,
llm_int8_enable_fp32_cpu_offload=True,
bnb_4bit_compute_dtype='bfloat16',
low_cpu_mem_usage = True,
)
self.decoder = AutoModelForCausalLM.from_pretrained(
cfg.decoder_model_name,
quantization_config=quant_config,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
resume_download=True,
low_cpu_mem_usage = True,
trust_remote_code=True,
)
else:
raise NotImplementedError()
# when compr_model_name is not set, then means using a decoder-based compressor, otherwise a bert based compressor
if cfg.compr_model_name is not None:
# case bert based compressor
self.compr = BERT_Compressor(cfg.compr_model_name, cfg.compr_rate, cfg.compr_linear_type, self.decoder.config.hidden_size)
else:
# case decoder based compressor
self.compr = None
# set lora adaptors
if cfg.lora:
peft_config = LoraConfig(
task_type="CAUSAL_LM",
r=cfg.lora_r,
lora_alpha=2* cfg.lora_r,
target_modules='all-linear',
lora_dropout=0.1,
)
self.decoder = get_peft_model(self.decoder, peft_config)
self.decoder.print_trainable_parameters()
# for training_form=compressor, then freeze the decoder for BERT-based
self.training_form = cfg.training_form
if self.training_form == "compressor" and self.compr is not None:
freeze_model(self.decoder)
self.decoder_tokenizer = AutoTokenizer.from_pretrained(cfg.decoder_model_name, use_fast=True, padding_side='left')
# define special tokens
self.decoder_tokenizer.add_special_tokens({'additional_special_tokens': ['<MEM>', '<AE>', '<ENC>', '<SEP>']})
self.decoder_tokenizer.mem_token = '<MEM>' # Memory token
self.decoder_tokenizer.ae_token = '<AE>' # token for autoencoding on decoder side
self.decoder_tokenizer.enc_token = '<ENC>' # token for autoencoding on compressor side
self.decoder_tokenizer.sep_token = '<SEP>' # sep token between document
self.decoder_tokenizer.mem_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<MEM>')
self.decoder_tokenizer.ae_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<AE>')
self.decoder_tokenizer.sep_token_id = self.decoder_tokenizer.convert_tokens_to_ids('<SEP>')
# if pad token ecist then use pad token, othrwise bos token
if self.decoder_tokenizer.pad_token_id is None:
self.decoder_tokenizer.pad_token_id = self.decoder_tokenizer.bos_token_id
# resize the tokenizer embedding
self.decoder.resize_token_embeddings(len(self.decoder_tokenizer))
self.decoder.generation_config.top_p=None
self.decoder.generation_config.temperature=None
self.compr_model_name = cfg.compr_model_name
# other settings
self.generation_top_k = cfg.generation_top_k
self.sep = cfg.sep
self.compr_rate = cfg.compr_rate
self.local_rank = os.getenv('LOCAL_RANK', '0')
def compress_and_replace_emb(self, enc_input_ids, enc_attention_mask, dec_input_ids):
indices = range(0, enc_input_ids.size(0) + 1, self.generation_top_k)
if self.compr:
compressed_embs = self.compr(enc_input_ids, enc_attention_mask)
input_embeds = self.replace_embeddings(compressed_embs, dec_input_ids, indices)
else:
compressed_embs = self.compr_decoder(enc_input_ids, enc_attention_mask)
input_embeds = self.replace_embeddings(compressed_embs, dec_input_ids, indices)
return input_embeds
def compr_decoder(self, input_ids, attention_mask):
emb = self.decoder(input_ids=input_ids, attention_mask=attention_mask, output_hidden_states=True).hidden_states[-1]
mask = input_ids == self.decoder_tokenizer.mem_token_id
return emb[mask].reshape(emb.size(0), -1, emb.size(-1))
def replace_embeddings(self, compressed_embs, dec_input_ids, indices):
# Embed the decoder input
inputs_embeds = self.decoder.get_input_embeddings()(dec_input_ids)
num_embs = compressed_embs.size(1)
if self.sep:
slot_len = num_embs + 1
else:
slot_len = num_embs
# get first mem_token inidices
first_mem_token_indices = torch.argmax((dec_input_ids == self.decoder_tokenizer.mem_token_id).int(), dim=1)
batch_size = inputs_embeds.size(0)
# for each example in batch, replace them with compressed embeddings
for i in range(batch_size):
for j in range(indices[i], indices[i + 1]):
start_idx = first_mem_token_indices[i].item() + (j-indices[i]) * slot_len
inputs_embeds[i, start_idx:start_idx + num_embs, :] = compressed_embs[j]
return inputs_embeds
def forward(self,
enc_input_ids: torch.LongTensor = None,
enc_attention_mask: torch.LongTensor = None,
dec_input_ids: torch.LongTensor = None,
dec_attention_mask: torch.LongTensor = None,
labels: torch.LongTensor = None):
# enc_input_ids: stores the contexts, should be flattened from all queries before input, dimention (batch_size*generation_top_k, token_length)
# enc_attention_mask: attention mask of enc_input_ids
# dec_input_ids: stores the prompts (including mem tokens), dimention (batch_size, token_length)
# dec_attention_mask: attention mask of dec_input_ids
# Perform compression with gradient tracking
inputs_embeds = self.compress_and_replace_emb(enc_input_ids, enc_attention_mask, dec_input_ids)
# if training_form is compressor, then detach the inputs_embeds, to make gradient not count in decoder
if (self.training_form == "compressor") and (self.compr is None):
inputs_embeds = inputs_embeds.detach()
# decoding
decoder_outputs = self.decoder(inputs_embeds=inputs_embeds, attention_mask=dec_attention_mask, labels=labels)
return {"loss": decoder_outputs.loss, "logits": decoder_outputs.logits}
def generate(self, model_input, max_new_tokens=128):
device = self.decoder.device
enc_input_ids, enc_attention_mask, dec_input_ids, dec_attention_mask = model_input['enc_input_ids'], model_input['enc_attention_mask'], model_input['dec_input_ids'], model_input['dec_attention_mask']
inputs_embeds = self.compress_and_replace_emb(enc_input_ids.to(device), enc_attention_mask.to(device), dec_input_ids.to(device))
output_ids = self.decoder.generate(
inputs_embeds=inputs_embeds.to(device),
attention_mask=dec_attention_mask.to(device),
do_sample=False,
top_p=None,
max_new_tokens=max_new_tokens
)
decoded = self.decoder_tokenizer.batch_decode(output_ids, skip_special_tokens=True)
return decoded
def generate_from_text(self, contexts, questions, max_new_tokens=128):
# for each question in list give input a list of contexts of equal length
# first make sure that every list in contexts are having the same length
assert len(contexts) == len(questions)
assert all([len(context) == len(contexts[0]) for context in contexts])
# prepare inp_enc for compression
# first flatten the contexts
self.generation_top_k = len(contexts[0])
flat_contexts = sum(contexts, [])
#tokenize the contexts, depending if compr exist or not
if self.compr is not None:
enc_input = self.compr.tokenizer(flat_contexts, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=self.compr_rate)
num_mem_tokens = math.ceil(enc_input['input_ids'].size(1) / self.compr_rate)
else:
# first need to add special token in flat_contexts
flat_contexts = [self.decoder_tokenizer.enc_token + self.decoder_tokenizer.bos_token + context + self.decoder_tokenizer.bos_token for context in flat_contexts]
enc_input = self.decoder_tokenizer(flat_contexts, truncation=True, return_tensors='pt', padding="longest")
num_mem_tokens = math.ceil((enc_input['input_ids'].size(1)-3) / self.compr_rate)
mem_tokens = torch.full((enc_input['input_ids'].size(0), num_mem_tokens), self.decoder_tokenizer.mem_token_id, dtype=torch.long)
enc_input['input_ids'] = torch.cat([mem_tokens, enc_input['input_ids']], dim=1)
enc_input['attention_mask'] = torch.cat([torch.ones_like(mem_tokens), enc_input['attention_mask']], dim=1)
# prepare inp_dec
mem_tokens = self.decoder_tokenizer.mem_token * num_mem_tokens
if self.sep:
mem_tokens += self.decoder_tokenizer.sep_token
instr = [self.decoder_tokenizer.bos_token + mem_tokens* self.generation_top_k + '[INST]' + question + '\n[/INST]\n' for question in questions]
inp_dec = self.decoder_tokenizer(instr, truncation=True, return_tensors='pt', padding="longest")
# generate
model_input = {
'enc_input_ids': enc_input['input_ids'],
'enc_attention_mask': enc_input['attention_mask'],
'dec_input_ids': inp_dec['input_ids'],
'dec_attention_mask': inp_dec['attention_mask']
}
return self.generate(model_input, max_new_tokens)
|