File size: 1,843 Bytes
0f53f87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mT5-tfidf-10pass-all-questions-QA-22-06-2023-without-ams-with-nonfactual-contextonly
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mT5-tfidf-10pass-all-questions-QA-22-06-2023-without-ams-with-nonfactual-contextonly

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0871
- Rouge1: 0.1409
- Rouge2: 0.0288
- Rougel: 0.1159
- Rougelsum: 0.1158
- Gen Len: 18.8206

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 2.7223        | 1.0   | 7356  | 2.1686          | 0.139  | 0.0274 | 0.1148 | 0.1147    | 18.6219 |
| 2.6314        | 2.0   | 14712 | 2.1008          | 0.1416 | 0.0293 | 0.1167 | 0.1166    | 18.8697 |
| 2.5676        | 3.0   | 22068 | 2.0871          | 0.1409 | 0.0288 | 0.1159 | 0.1158    | 18.8206 |


### Framework versions

- Transformers 4.28.0
- Pytorch 2.0.1+cu118
- Datasets 2.13.1
- Tokenizers 0.13.3