File size: 30,721 Bytes
006a2b7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
import inspect
import json
import subprocess
from pathlib import Path
from typing import Callable, List, Optional, Union

import numpy as np
import torch
from PIL import Image

import cv2
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, logging
from huggingface_hub import hf_hub_download
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

default_scheduler = PNDMScheduler(
    beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
)
ddim_scheduler = DDIMScheduler(
    beta_start=0.00085,
    beta_end=0.012,
    beta_schedule="scaled_linear",
    clip_sample=False,
    set_alpha_to_one=False,
)
klms_scheduler = LMSDiscreteScheduler(
    beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
)
SCHEDULERS = dict(default=default_scheduler, ddim=ddim_scheduler, klms=klms_scheduler)


def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):
    """helper function to spherically interpolate two arrays v1 v2"""

    if not isinstance(v0, np.ndarray):
        inputs_are_torch = True
        input_device = v0.device
        v0 = v0.cpu().numpy()
        v1 = v1.cpu().numpy()

    dot = np.sum(v0 * v1 / (np.linalg.norm(v0) * np.linalg.norm(v1)))
    if np.abs(dot) > DOT_THRESHOLD:
        v2 = (1 - t) * v0 + t * v1
    else:
        theta_0 = np.arccos(dot)
        sin_theta_0 = np.sin(theta_0)
        theta_t = theta_0 * t
        sin_theta_t = np.sin(theta_t)
        s0 = np.sin(theta_0 - theta_t) / sin_theta_0
        s1 = sin_theta_t / sin_theta_0
        v2 = s0 * v0 + s1 * v1

    if inputs_are_torch:
        v2 = torch.from_numpy(v2).to(input_device)

    return v2


class RealESRGANModel(torch.nn.Module):
    def __init__(self, model_path, tile=0, tile_pad=10, pre_pad=0, fp32=False):
        super().__init__()
        try:
            from basicsr.archs.rrdbnet_arch import RRDBNet
            from realesrgan import RealESRGANer
        except ImportError as e:
            raise ImportError(
                "You tried to import realesrgan without having it installed properly. To install Real-ESRGAN, run:\n\n"
                "pip install realesrgan"
            )

        model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
        self.upsampler = RealESRGANer(
            scale=4,
            model_path=model_path,
            model=model,
            tile=tile,
            tile_pad=tile_pad,
            pre_pad=pre_pad,
            half=not fp32
        )

    def forward(self, image, outscale=4, convert_to_pil=True):
        """Upsample an image array or path.

        Args:
            image (Union[np.ndarray, str]): Either a np array or an image path. np array is assumed to be in RGB format,
                and we convert it to BGR.
            outscale (int, optional): Amount to upscale the image. Defaults to 4.
            convert_to_pil (bool, optional): If True, return PIL image. Otherwise, return numpy array (BGR). Defaults to True.

        Returns:
            Union[np.ndarray, PIL.Image.Image]: An upsampled version of the input image.
        """
        if isinstance(image, (str, Path)):
            img = cv2.imread(image, cv2.IMREAD_UNCHANGED)
        else:
            img = image
            img = (img * 255).round().astype("uint8")
            img = img[:, :, ::-1]

        image, _ = self.upsampler.enhance(img, outscale=outscale)

        if convert_to_pil:
            image = Image.fromarray(image[:, :, ::-1])

        return image

    @classmethod
    def from_pretrained(cls, model_name_or_path='nateraw/real-esrgan'):
        """Initialize a pretrained Real-ESRGAN upsampler.

        Example:
            ```python
            >>> from stable_diffusion_videos import PipelineRealESRGAN
            >>> pipe = PipelineRealESRGAN.from_pretrained('nateraw/real-esrgan')
            >>> im_out = pipe('input_img.jpg')
            ```

        Args:
            model_name_or_path (str, optional): The Hugging Face repo ID or path to local model. Defaults to 'nateraw/real-esrgan'.

        Returns:
            stable_diffusion_videos.PipelineRealESRGAN: An instance of `PipelineRealESRGAN` instantiated from pretrained model.
        """
        # reuploaded form official ones mentioned here:
        # https://github.com/xinntao/Real-ESRGAN
        if Path(model_name_or_path).exists():
            file = model_name_or_path
        else:
            file = hf_hub_download(model_name_or_path, 'RealESRGAN_x4plus.pth')
        return cls(file)


    def upsample_imagefolder(self, in_dir, out_dir, suffix='out', outfile_ext='.png'):
        in_dir, out_dir = Path(in_dir), Path(out_dir)
        if not in_dir.exists():
            raise FileNotFoundError(f"Provided input directory {in_dir} does not exist")

        out_dir.mkdir(exist_ok=True, parents=True)
         
        image_paths = [x for x in in_dir.glob('*') if x.suffix.lower() in ['.png', '.jpg', '.jpeg']]
        for image in image_paths:
            im = self(str(image))
            out_filepath = out_dir / (image.stem + suffix + outfile_ext)
            im.save(out_filepath)

class NoUpsamplingModel(torch.nn.Module):

    def __init__(self):
        super().__init__()

    def forward(self, images):
        return images


def make_video_ffmpeg(frame_dir, output_file_name='output.mp4', frame_filename="frame%06d.png", fps=30):
    frame_ref_path = str(frame_dir / frame_filename)
    video_path = str(frame_dir / output_file_name)
    subprocess.call(
        f"ffmpeg -r {fps} -i {frame_ref_path} -vcodec libx264 -crf 10 -pix_fmt yuv420p"
        f" {video_path}".split()
    )
    return video_path


class StableDiffusionWalkPipeline(DiffusionPipeline):
    r"""
    Pipeline for generating videos by interpolating  Stable Diffusion's latent space.
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
    ):
        super().__init__()

        if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1:
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
        Enable sliced attention computation.
        When this option is enabled, the attention module will split the input tensor in slices, to compute attention
        in several steps. This is useful to save some memory in exchange for a small speed decrease.
        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
                a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
                `attention_head_dim` must be a multiple of `slice_size`.
        """
        if slice_size == "auto":
            # half the attention head size is usually a good trade-off between
            # speed and memory
            slice_size = self.unet.config.attention_head_dim // 2
        self.unet.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
        Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
        back to computing attention in one step.
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    @torch.no_grad()
    def step(
        self,
        prompt: Optional[Union[str, List[str]]] = None,
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: Optional[int] = 1,
        text_embeddings: Optional[torch.FloatTensor] = None,
        **kwargs,
    ):
        r"""
        Function invoked when calling the pipeline for generation.
        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 512):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
            text_embeddings(`torch.FloatTensor`, *optional*):
                Pre-generated text embeddings.
        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

        if text_embeddings is None:
            if isinstance(prompt, str):
                batch_size = 1
            elif isinstance(prompt, list):
                batch_size = len(prompt)
            else:
                raise ValueError(
                    f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
                )

            # get prompt text embeddings
            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids

            if text_input_ids.shape[-1] > self.tokenizer.model_max_length:
                removed_text = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :])
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )
                text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length]
            text_embeddings = self.text_encoder(text_input_ids.to(self.device))[0]
        else:
            batch_size = text_embeddings.shape[0]

        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0
        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance:
            # HACK - Not setting text_input_ids here when walking, so hard coding to max length of tokenizer
            # TODO - Determine if this is OK to do
            # max_length = text_input_ids.shape[-1]
            max_length = self.tokenizer.model_max_length
            uncond_input = self.tokenizer(
                [""] * batch_size, padding="max_length", max_length=max_length, return_tensors="pt"
            )
            uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]

            # For classifier free guidance, we need to do two forward passes.
            # Here we concatenate the unconditional and text embeddings into a single batch
            # to avoid doing two forward passes
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        # get the initial random noise unless the user supplied it

        # Unlike in other pipelines, latents need to be generated in the target device
        # for 1-to-1 results reproducibility with the CompVis implementation.
        # However this currently doesn't work in `mps`.
        latents_device = "cpu" if self.device.type == "mps" else self.device
        latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
        if latents is None:
            latents = torch.randn(
                latents_shape,
                generator=generator,
                device=latents_device,
                dtype=text_embeddings.dtype,
            )
        else:
            if latents.shape != latents_shape:
                raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}")
            latents = latents.to(latents_device)

        # set timesteps
        self.scheduler.set_timesteps(num_inference_steps)

        # Some schedulers like PNDM have timesteps as arrays
        # It's more optimzed to move all timesteps to correct device beforehand
        if torch.is_tensor(self.scheduler.timesteps):
            timesteps_tensor = self.scheduler.timesteps.to(self.device)
        else:
            timesteps_tensor = torch.tensor(self.scheduler.timesteps.copy(), device=self.device)

        # if we use LMSDiscreteScheduler, let's make sure latents are multiplied by sigmas
        if isinstance(self.scheduler, LMSDiscreteScheduler):
            latents = latents * self.scheduler.sigmas[0]

        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        for i, t in enumerate(self.progress_bar(timesteps_tensor)):
            # expand the latents if we are doing classifier free guidance
            latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
            if isinstance(self.scheduler, LMSDiscreteScheduler):
                sigma = self.scheduler.sigmas[i]
                # the model input needs to be scaled to match the continuous ODE formulation in K-LMS
                latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)

            # predict the noise residual
            noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

            # perform guidance
            if do_classifier_free_guidance:
                noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

            # compute the previous noisy sample x_t -> x_t-1
            if isinstance(self.scheduler, LMSDiscreteScheduler):
                latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs).prev_sample
            else:
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

            # call the callback, if provided
            if callback is not None and i % callback_steps == 0:
                callback(i, t, latents)

        latents = 1 / 0.18215 * latents
        image = self.vae.decode(latents).sample

        image = (image / 2 + 0.5).clamp(0, 1)
        image = image.cpu().permute(0, 2, 3, 1).numpy()

        safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(self.device)
        image, has_nsfw_concept = self.safety_checker(
            images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
        )

        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    def __call__(
        self,
        prompts: List[str] = ["blueberry spaghetti", "strawberry spaghetti"],
        seeds: List[int] = [42, 123],
        num_interpolation_steps: Union[int, List[int]] = 5,
        output_dir: str = "dreams",
        name: str = "berry_good_spaghetti",
        height: int = 512,
        width: int = 512,
        guidance_scale: float = 7.5,
        eta: float = 0.0,
        num_inference_steps: int = 50,
        do_loop: bool = False,
        make_video: bool = False,
        use_lerp_for_text: bool = True,
        scheduler: str = "klms",  # choices: default, ddim, klms
        disable_tqdm: bool = False,
        upsample: bool = False,
        fps: int = 30,
        resume: bool = False,
        batch_size: int = 1,
        frame_filename_ext: str = '.png',
    ):
        if upsample:
            if getattr(self, 'upsampler', None) is None:
                self.upsampler = RealESRGANModel.from_pretrained('nateraw/real-esrgan')
            self.upsampler.to(self.device)

        output_path = Path(output_dir) / name
        output_path.mkdir(exist_ok=True, parents=True)
        prompt_config_path = output_path / 'prompt_config.json'

        if not resume:
            # Write prompt info to file in output dir so we can keep track of what we did
            prompt_config_path.write_text(
                json.dumps(
                    dict(
                        prompts=prompts,
                        seeds=seeds,
                        num_interpolation_steps=num_interpolation_steps,
                        name=name,
                        guidance_scale=guidance_scale,
                        eta=eta,
                        num_inference_steps=num_inference_steps,
                        do_loop=do_loop,
                        make_video=make_video,
                        use_lerp_for_text=use_lerp_for_text,
                        scheduler=scheduler,
                        upsample=upsample,
                        fps=fps,
                        height=height,
                        width=width,
                    ),
                    indent=2,
                    sort_keys=False,
                )
            )
        else:
            # When resuming, we load all available info from existing prompt config, using kwargs passed in where necessary
            if not prompt_config_path.exists():
                raise FileNotFoundError(f"You specified resume=True, but no prompt config file was found at {prompt_config_path}")

            data = json.load(open(prompt_config_path))
            prompts = data['prompts']
            seeds = data['seeds']
            # NOTE - num_steps was renamed to num_interpolation_steps. Including it here for backwards compatibility.
            num_interpolation_steps = data.get('num_interpolation_steps') or data.get('num_steps')
            height = data['height'] if 'height' in data else height
            width = data['width'] if 'width' in data else width
            guidance_scale = data['guidance_scale']
            eta = data['eta']
            num_inference_steps = data['num_inference_steps']
            do_loop = data['do_loop']
            make_video = data['make_video']
            use_lerp_for_text = data['use_lerp_for_text']
            scheduler = data['scheduler']
            disable_tqdm=disable_tqdm
            upsample = data['upsample'] if 'upsample' in data else upsample
            fps = data['fps'] if 'fps' in data else fps

            resume_step = int(sorted(output_path.glob(f"frame*{frame_filename_ext}"))[-1].stem[5:])
            print(f"\nResuming {output_path} from step {resume_step}...")

        self.set_progress_bar_config(disable=disable_tqdm)
        self.scheduler = SCHEDULERS[scheduler]

        if isinstance(num_interpolation_steps, int):
            num_interpolation_steps = [num_interpolation_steps] * (len(prompts)-1)

        assert len(prompts) == len(seeds) == len(num_interpolation_steps) +1

        first_prompt, *prompts = prompts
        embeds_a = self.embed_text(first_prompt)

        first_seed, *seeds = seeds

        latents_a = torch.randn(
            (1, self.unet.in_channels, height // 8, width // 8),
            device=self.device,
            generator=torch.Generator(device=self.device).manual_seed(first_seed),
        )

        if do_loop:
            prompts.append(first_prompt)
            seeds.append(first_seed)
            num_interpolation_steps.append(num_interpolation_steps[0])


        frame_index = 0
        total_frame_count = sum(num_interpolation_steps)
        for prompt, seed, num_step in zip(prompts, seeds, num_interpolation_steps):
            # Text
            embeds_b = self.embed_text(prompt)

            # Latent Noise
            latents_b = torch.randn(
                (1, self.unet.in_channels, height // 8, width // 8),
                device=self.device,
                generator=torch.Generator(device=self.device).manual_seed(seed),
            )

            latents_batch, embeds_batch = None, None
            for i, t in enumerate(np.linspace(0, 1, num_step)):

                frame_filepath = output_path / (f"frame%06d{frame_filename_ext}" % frame_index)
                if resume and frame_filepath.is_file():
                    frame_index += 1
                    continue

                if use_lerp_for_text:
                    embeds = torch.lerp(embeds_a, embeds_b, float(t))
                else:
                    embeds = slerp(float(t), embeds_a, embeds_b)
                latents = slerp(float(t), latents_a, latents_b)

                embeds_batch = embeds if embeds_batch is None else torch.cat([embeds_batch, embeds])
                latents_batch = latents if latents_batch is None else torch.cat([latents_batch, latents])

                del embeds
                del latents
                torch.cuda.empty_cache()

                batch_is_ready = embeds_batch.shape[0] == batch_size or t == 1.0
                if not batch_is_ready:
                    continue

                do_print_progress = (i == 0) or ((frame_index) % 20 == 0)
                if do_print_progress:
                    print(f"COUNT: {frame_index}/{total_frame_count}")

                with torch.autocast("cuda"):
                    outputs = self.step(
                        latents=latents_batch,
                        text_embeddings=embeds_batch,
                        height=height,
                        width=width,
                        guidance_scale=guidance_scale,
                        eta=eta,
                        num_inference_steps=num_inference_steps,
                        output_type='pil' if not upsample else 'numpy'
                    )["sample"]

                    del embeds_batch
                    del latents_batch
                    torch.cuda.empty_cache()
                    latents_batch, embeds_batch = None, None

                    if upsample:
                        images = []
                        for output in outputs:
                            images.append(self.upsampler(output))
                    else:
                        images = outputs
                for image in images:
                    frame_filepath = output_path / (f"frame%06d{frame_filename_ext}" % frame_index)
                    image.save(frame_filepath)
                    frame_index += 1

            embeds_a = embeds_b
            latents_a = latents_b

        if make_video:
            return make_video_ffmpeg(output_path, f"{name}.mp4", fps=fps, frame_filename=f"frame%06d{frame_filename_ext}")

    def embed_text(self, text):
        """Helper to embed some text"""
        with torch.autocast("cuda"):
            text_input = self.tokenizer(
                text,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            with torch.no_grad():
                embed = self.text_encoder(text_input.input_ids.to(self.device))[0]
        return embed