File size: 56,462 Bytes
506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a b0776cb 506c27a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 |
========================
START TIME: Tue Jul 2 19:53:08 UTC 2024
python3 version = Python 3.10.14
========================
The token has not been saved to the git credentials helper. Pass `add_to_git_credential=True` in this function directly or `--add-to-git-credential` if using via `huggingface-cli` if you want to set the git credential as well.
Token is valid (permission: write).
Your token has been saved to /admin/home/ferdinand_mom/.cache/huggingface/token
Login successful
Already on 'bench_cluster'
M examples/config_tiny_llama.py
M examples/config_tiny_llama.yaml
M examples/train_tiny_llama.sh
M src/nanotron/models/llama.py
M src/nanotron/trainer.py
Your branch is up to date with 'origin/bench_cluster'.
Job status: RUNNING
W0702 19:53:11.664000 140081734354752 torch/distributed/run.py:757]
W0702 19:53:11.664000 140081734354752 torch/distributed/run.py:757] *****************************************
W0702 19:53:11.664000 140081734354752 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0702 19:53:11.664000 140081734354752 torch/distributed/run.py:757] *****************************************
W0702 19:53:15.542000 139790828439360 torch/distributed/run.py:757]
W0702 19:53:15.542000 139790828439360 torch/distributed/run.py:757] *****************************************
W0702 19:53:15.542000 139790828439360 torch/distributed/run.py:757] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
W0702 19:53:15.542000 139790828439360 torch/distributed/run.py:757] *****************************************
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Config:
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Config(general=GeneralArgs(project='bench_cluster',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: run='%date_%jobid',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: seed=42,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: step=None,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: consumed_train_samples=None,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: benchmark_csv_path=None,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: ignore_sanity_checks=True),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: parallelism=ParallelismArgs(dp=2,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pp=8,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tp=1,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pp_engine=<nanotron.parallel.pipeline_parallel.engine.OneForwardOneBackwardPipelineEngine object at 0x7f67fc8a46a0>,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tp_mode=<TensorParallelLinearMode.REDUCE_SCATTER: 2>,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tp_linear_async_communication=False,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: expert_parallel_size=1),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: model=ModelArgs(model_config=LlamaConfig(bos_token_id=1,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: eos_token_id=2,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hidden_act='silu',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hidden_size=2048,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: initializer_range=0.02,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: intermediate_size=4096,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: is_llama_config=True,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: max_position_embeddings=4096,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_attention_heads=32,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_hidden_layers=24,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_key_value_heads=32,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pad_token_id=None,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pretraining_tp=1,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rms_norm_eps=1e-05,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rope_scaling=None,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rope_theta=10000.0,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tie_word_embeddings=True,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: use_cache=True,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: vocab_size=50257),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: init_method=RandomInit(std=0.025),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: dtype=torch.bfloat16,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: make_vocab_size_divisible_by=1,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: ddp_bucket_cap_mb=25),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tokenizer=TokenizerArgs(tokenizer_name_or_path='openai-community/gpt2',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tokenizer_revision=None,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tokenizer_max_length=None),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: checkpoints=CheckpointsArgs(checkpoints_path=Path('/dev/null'),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: checkpoint_interval=100000,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: save_initial_state=False,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: resume_checkpoint_path=None,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: checkpoints_path_is_shared_file_system=False),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: logging=LoggingArgs(log_level='info',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: log_level_replica='info',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: iteration_step_info_interval=1),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tokens=TokensArgs(sequence_length=4096,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: train_steps=20,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: micro_batch_size=8,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: batch_accumulation_per_replica=64,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: val_check_interval=-1,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: limit_val_batches=0,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: limit_test_batches=0),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: optimizer=OptimizerArgs(optimizer_factory=AdamWOptimizerArgs(adam_eps=1e-08,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: adam_beta1=0.9,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: adam_beta2=0.95,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: torch_adam_is_fused=True,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: name='adamW'),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: zero_stage=1,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: weight_decay=0.01,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: clip_grad=1.0,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: accumulate_grad_in_fp32=True,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: learning_rate_scheduler=LRSchedulerArgs(learning_rate=0.0001,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lr_warmup_steps=1,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lr_warmup_style='linear',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lr_decay_style='linear',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lr_decay_steps=19,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lr_decay_starting_step=None,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: min_decay_lr=1e-05)),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: data_stages=[DatasetStageArgs(name='Training Stage',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: start_training_step=1,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: data=DataArgs(dataset=PretrainDatasetsArgs(hf_dataset_or_datasets='roneneldan/TinyStories',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hf_dataset_splits='train',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hf_dataset_config_name=None,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: dataset_processing_num_proc_per_process=64,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: dataset_overwrite_cache=False,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: text_column_name='text'),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: seed=42,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_loading_workers=32))],
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: profiler=ProfilerArgs(profiler_export_path=Path('/fsx/ferdinandmom/ferdinand-hf/bench_cluster/results/llama-1B/16_GPUS/dp-2_tp-1_pp-8_mbz-8')),
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: lighteval=None)
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Model Config:
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: LlamaConfig(bos_token_id=1,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: eos_token_id=2,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hidden_act='silu',
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: hidden_size=2048,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: initializer_range=0.02,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: intermediate_size=4096,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: is_llama_config=True,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: max_position_embeddings=4096,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_attention_heads=32,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_hidden_layers=24,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: num_key_value_heads=32,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pad_token_id=None,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: pretraining_tp=1,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rms_norm_eps=1e-05,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rope_scaling=None,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: rope_theta=10000.0,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: tie_word_embeddings=True,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: use_cache=True,
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: vocab_size=50257)
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Building model..
[default0]:07/02/2024 19:53:37 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Setting PP block ranks...
[default2]:07/02/2024 19:53:50 [INFO|DP=0|PP=5|TP=0|ip-26-0-171-88]: Local number of parameters: 126M (240.02MiB)
[default4]:07/02/2024 19:53:50 [INFO|DP=0|PP=6|TP=0|ip-26-0-171-88]: Local number of parameters: 168M (320.03MiB)
[default4]:07/02/2024 19:53:50 [INFO|DP=0|PP=6|TP=0|ip-26-0-171-88]: [After model building] Memory usage: 324.04MiB. Peak allocated: 326.07MiB Peak reserved: 336.00MiB
[default4]:07/02/2024 19:53:50 [INFO|DP=0|PP=6|TP=0|ip-26-0-171-88]: No checkpoint path provided.
[default0]:07/02/2024 19:53:50 [INFO|DP=0|PP=4|TP=0|ip-26-0-171-88]: Local number of parameters: 126M (240.02MiB)
[default0]:07/02/2024 19:53:50 [INFO|DP=0|PP=4|TP=0|ip-26-0-171-88]: [After model building] Memory usage: 243.03MiB. Peak allocated: 245.06MiB Peak reserved: 262.00MiB
[default0]:07/02/2024 19:53:50 [INFO|DP=0|PP=4|TP=0|ip-26-0-171-88]: No checkpoint path provided.
[default6]:07/02/2024 19:53:50 [INFO|DP=0|PP=7|TP=0|ip-26-0-171-88]: Local number of parameters: 103M (196.32MiB)
[default6]:07/02/2024 19:53:50 [INFO|DP=0|PP=7|TP=0|ip-26-0-171-88]: [After model building] Memory usage: 196.33MiB. Peak allocated: 196.34MiB Peak reserved: 200.00MiB
[default6]:07/02/2024 19:53:50 [INFO|DP=0|PP=7|TP=0|ip-26-0-171-88]: No checkpoint path provided.
[default6]:07/02/2024 19:53:50 [INFO|DP=0|PP=3|TP=0|ip-26-0-171-62]: Local number of parameters: 168M (320.03MiB)
[default6]:07/02/2024 19:53:50 [INFO|DP=0|PP=3|TP=0|ip-26-0-171-62]: [After model building] Memory usage: 324.04MiB. Peak allocated: 326.07MiB Peak reserved: 336.00MiB
[default6]:07/02/2024 19:53:50 [INFO|DP=0|PP=3|TP=0|ip-26-0-171-62]: No checkpoint path provided.
[default4]:07/02/2024 19:53:50 [INFO|DP=0|PP=2|TP=0|ip-26-0-171-62]: Local number of parameters: 126M (240.02MiB)
[default4]:07/02/2024 19:53:50 [INFO|DP=0|PP=2|TP=0|ip-26-0-171-62]: [After model building] Memory usage: 243.03MiB. Peak allocated: 245.06MiB Peak reserved: 262.00MiB
[default4]:07/02/2024 19:53:50 [INFO|DP=0|PP=2|TP=0|ip-26-0-171-62]: No checkpoint path provided.
[default2]:07/02/2024 19:53:50 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-62]: Local number of parameters: 126M (240.02MiB)
[default2]:07/02/2024 19:53:50 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-62]: [After model building] Memory usage: 243.03MiB. Peak allocated: 245.06MiB Peak reserved: 262.00MiB
[default2]:07/02/2024 19:53:50 [INFO|DP=0|PP=1|TP=0|ip-26-0-171-62]: No checkpoint path provided.
[default0]:07/02/2024 19:53:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Total number of parameters: 1.21G (2312.82MiB)
[default0]:07/02/2024 19:53:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Local number of parameters: 271M (516.35MiB)
[default0]:07/02/2024 19:53:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [After model building] Memory usage: 520.36MiB. Peak allocated: 522.39MiB Peak reserved: 534.00MiB
[default0]:07/02/2024 19:53:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: No checkpoint path provided.
[default0]:07/02/2024 19:53:50 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Parametrizing model parameters using StandardParametrizator
[default2]:07/02/2024 19:53:50 [INFO|DP=0|PP=5|TP=0|ip-26-0-171-88]: [After model building] Memory usage: 243.03MiB. Peak allocated: 245.06MiB Peak reserved: 262.00MiB
[default2]:07/02/2024 19:53:50 [INFO|DP=0|PP=5|TP=0|ip-26-0-171-88]: No checkpoint path provided.
[default1]:07/02/2024 19:53:51 [INFO|DP=1|PP=0|TP=0|ip-26-0-171-62]: No checkpoint path provided.
[default5]:07/02/2024 19:53:51 [INFO|DP=1|PP=2|TP=0|ip-26-0-171-62]: No checkpoint path provided.
[default7]:07/02/2024 19:53:51 [INFO|DP=1|PP=3|TP=0|ip-26-0-171-62]: No checkpoint path provided.
[default3]:07/02/2024 19:53:51 [INFO|DP=1|PP=1|TP=0|ip-26-0-171-62]: No checkpoint path provided.
[default3]:07/02/2024 19:53:51 [INFO|DP=1|PP=5|TP=0|ip-26-0-171-88]: No checkpoint path provided.
[default5]:07/02/2024 19:53:51 [INFO|DP=1|PP=6|TP=0|ip-26-0-171-88]: No checkpoint path provided.
[default1]:07/02/2024 19:53:51 [INFO|DP=1|PP=4|TP=0|ip-26-0-171-88]: No checkpoint path provided.
[default7]:07/02/2024 19:53:51 [INFO|DP=1|PP=7|TP=0|ip-26-0-171-88]: No checkpoint path provided.
[default0]:07/02/2024 19:53:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [Optimizer Building] Using LearningRateForSP as learning rate
[default0]:07/02/2024 19:53:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [ZeRO sharding] Size of optimizer params per rank:
[default0]:07/02/2024 19:53:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [ZeRO sharding] DP Rank 0 has 135M out of 271M (50.00%) params' optimizer states
[default0]:07/02/2024 19:53:54 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [ZeRO sharding] DP Rank 1 has 135M out of 271M (50.00%) params' optimizer states
[default0]:07/02/2024 19:53:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [Training Plan] Stage Training Stage has 19 remaining training steps and has consumed 0 samples
[default0]:07/02/2024 19:53:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Using `datasets` library
[default0]:07/02/2024 19:53:55 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Loading tokenizer from openai-community/gpt2 and transformers/hf_hub versions ('4.41.2', '0.23.4')
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/02/2024 19:53:55 [WARNING|DP=0|PP=0|TP=0|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/02/2024 19:53:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [Training Plan] There are 1 training stages
[default0]:07/02/2024 19:53:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [Stage Training Stage] start from step 1
[default0]:07/02/2024 19:53:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]:
[default0]:07/02/2024 19:53:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: [Start training] datetime: 2024-07-02 19:53:56.695094 | mbs: 8 | grad_accum: 64 | global_batch_size: 1024 | sequence_length: 4096 | train_steps: 20 | start_iteration_step: 0 | consumed_train_samples: 0
[default0]:07/02/2024 19:53:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Resuming training from stage Training Stage, it has trained for 0 samples and has 19 remaining train steps
[default0]:07/02/2024 19:53:56 [INFO|DP=0|PP=0|TP=0|ip-26-0-171-62]: Memory usage: 2069.40MiB. Peak allocated 2069.40MiB. Peak reserved: 2086.00MiB
[default4]:07/02/2024 19:53:56 [WARNING|DP=0|PP=2|TP=0|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/02/2024 19:53:56 [WARNING|DP=0|PP=3|TP=0|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/02/2024 19:53:56 [WARNING|DP=1|PP=0|TP=0|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/02/2024 19:53:56 [WARNING|DP=1|PP=3|TP=0|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/02/2024 19:53:56 [WARNING|DP=0|PP=1|TP=0|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/02/2024 19:53:56 [WARNING|DP=1|PP=2|TP=0|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/02/2024 19:53:56 [WARNING|DP=1|PP=1|TP=0|ip-26-0-171-62]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:07/02/2024 19:53:56 [WARNING|DP=1|PP=5|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
[default2]:07/02/2024 19:53:56 [WARNING|DP=0|PP=5|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:07/02/2024 19:53:56 [WARNING|DP=1|PP=6|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default2]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:07/02/2024 19:53:56 [WARNING|DP=0|PP=4|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
[default3]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:07/02/2024 19:53:56 [WARNING|DP=0|PP=7|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
[default1]:07/02/2024 19:53:56 [WARNING|DP=1|PP=4|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:07/02/2024 19:53:56 [WARNING|DP=1|PP=7|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
[default7]:Repo card metadata block was not found. Setting CardData to empty.
[default6]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:Repo card metadata block was not found. Setting CardData to empty.
[default5]:Repo card metadata block was not found. Setting CardData to empty.
[default1]:Repo card metadata block was not found. Setting CardData to empty.
[default4]:07/02/2024 19:53:57 [WARNING|DP=0|PP=6|TP=0|ip-26-0-171-88]: Repo card metadata block was not found. Setting CardData to empty.
[default4]:Repo card metadata block was not found. Setting CardData to empty.
[default0]:[rank0]: Traceback (most recent call last):
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default0]:[rank0]: trainer.train(dataloader)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default0]:[rank0]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default0]:[rank0]: outputs = self.pipeline_engine.train_batch_iter(
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default0]:[rank0]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default0]:[rank0]: output = model(**micro_batch)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default0]:[rank0]: sharded_logits = self.model(
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default0]:[rank0]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default0]:[rank0]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default0]:[rank0]: output = self.pp_block(**new_kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 631, in forward
[default0]:[rank0]: output = self.attn(hidden_states=hidden_states, sequence_mask=sequence_mask)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 360, in forward
[default0]:[rank0]: qkv_states = self.qkv_proj(
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank0]: return self._call_impl(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank0]: return forward_call(*args, **kwargs)
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/nn.py", line 87, in forward
[default0]:[rank0]: return column_linear(
[default0]:[rank0]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/tensor_parallel/functional.py", line 359, in column_linear
[default0]:[rank0]: return F.linear(input, weight, bias)
[default0]:[rank0]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 384.00 MiB. GPU
[default1]:[rank1]: Traceback (most recent call last):
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default1]:[rank1]: trainer.train(dataloader)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default1]:[rank1]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default1]:[rank1]: outputs = self.pipeline_engine.train_batch_iter(
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default1]:[rank1]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default1]:[rank1]: output = model(**micro_batch)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default1]:[rank1]: sharded_logits = self.model(
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default1]:[rank1]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default1]:[rank1]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 151, in forward
[default1]:[rank1]: output = self.pp_block(**new_kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 637, in forward
[default1]:[rank1]: hidden_states = self.mlp(hidden_states=hidden_states)["hidden_states"]
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 172, in forward
[default1]:[rank1]: hidden_states = self.down_proj(self.split_silu_mul(merged_states))
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default1]:[rank1]: return self._call_impl(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default1]:[rank1]: return forward_call(*args, **kwargs)
[default1]:[rank1]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 128, in forward
[default1]:[rank1]: return self.act(gate_states) * up_states
[default1]:[rank1]: torch.cuda.OutOfMemoryError: CUDA out of memory. Tried to allocate 256.00 MiB. GPU has a total capacity of 79.33 GiB of which 93.94 MiB is free. Including non-PyTorch memory, this process has 79.22 GiB memory in use. Of the allocated memory 70.93 GiB is allocated by PyTorch, and 239.24 MiB is reserved by PyTorch but unallocated. If reserved but unallocated memory is large try setting PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True to avoid fragmentation. See documentation for Memory Management (https://pytorch.org/docs/stable/notes/cuda.html#environment-variables)
[default6]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default6]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
W0702 19:54:21.065000 140081734354752 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3797700 closing signal SIGTERM
W0702 19:54:21.066000 140081734354752 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3797701 closing signal SIGTERM
W0702 19:54:21.066000 140081734354752 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3797702 closing signal SIGTERM
W0702 19:54:21.066000 140081734354752 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3797703 closing signal SIGTERM
W0702 19:54:21.068000 140081734354752 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3797704 closing signal SIGTERM
W0702 19:54:21.070000 140081734354752 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3797705 closing signal SIGTERM
W0702 19:54:21.070000 140081734354752 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 3797706 closing signal SIGTERM
[default4]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default4]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default7]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default7]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default2]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default2]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
E0702 19:54:23.987000 140081734354752 torch/distributed/elastic/multiprocessing/api.py:826] failed (exitcode: 1) local_rank: 0 (pid: 3797699) of binary: /fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/python3.10
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 263, in launch_agent
raise ChildFailedError(
torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
============================================================
/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py FAILED
------------------------------------------------------------
Failures:
<NO_OTHER_FAILURES>
------------------------------------------------------------
Root Cause (first observed failure):
[0]:
time : 2024-07-02_19:54:21
host : ip-26-0-171-62.ec2.internal
rank : 0 (local_rank: 0)
exitcode : 1 (pid: 3797699)
error_file: <N/A>
traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
============================================================
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: Attempting to run cuBLAS, but there was no current CUDA context! Attempting to set the primary context... (Triggered internally at ../aten/src/ATen/cuda/CublasHandlePool.cpp:135.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
[default0]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default0]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
srun: error: ip-26-0-171-62: task 0: Exited with exit code 1
[default5]:/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/autograd/graph.py:744: UserWarning: c10d::allreduce_: an autograd kernel was not registered to the Autograd key(s) but we are trying to backprop through it. This may lead to silently incorrect behavior. This behavior is deprecated and will be removed in a future version of PyTorch. If your operator is differentiable, please ensure you have registered an autograd kernel to the correct Autograd key (e.g. DispatchKey::Autograd, DispatchKey::CompositeImplicitAutograd). If your operator is not differentiable, or to squash this warning and use the previous behavior, please register torch::CppFunction::makeFallthrough() to DispatchKey::Autograd. (Triggered internally at ../torch/csrc/autograd/autograd_not_implemented_fallback.cpp:63.)
[default5]: return Variable._execution_engine.run_backward( # Calls into the C++ engine to run the backward pass
W0702 19:54:25.875000 139785161619200 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1252] The node 'ip-26-0-171-88.ec2.internal_786089_0' has failed to send a keep-alive heartbeat to the rendezvous 'none' due to an error of type RendezvousConnectionError.
[default0]:[rank8]: Traceback (most recent call last):
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/run_train.py", line 237, in <module>
[default0]:[rank8]: trainer.train(dataloader)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 429, in train
[default0]:[rank8]: outputs, loss_avg = self.training_step(dataloader=self.current_dataloader)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/trainer.py", line 462, in training_step
[default0]:[rank8]: outputs = self.pipeline_engine.train_batch_iter(
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 278, in train_batch_iter
[default0]:[rank8]: output = self.forward(context=context, state=state, micro_batch=micro_batch, model=model)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/engine.py", line 44, in forward
[default0]:[rank8]: output = model(**micro_batch)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 891, in forward
[default0]:[rank8]: sharded_logits = self.model(
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 764, in forward
[default0]:[rank8]: return self.forward_with_hidden_states(input_ids=input_ids, input_mask=input_mask)[0]
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/models/llama.py", line 780, in forward_with_hidden_states
[default0]:[rank8]: hidden_encoder_states = encoder_block(**hidden_encoder_states)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1532, in _wrapped_call_impl
[default0]:[rank8]: return self._call_impl(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1541, in _call_impl
[default0]:[rank8]: return forward_call(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/block.py", line 126, in forward
[default0]:[rank8]: new_kwargs[name] = recv_from_pipeline_state_buffer(
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/functional.py", line 117, in recv_from_pipeline_state_buffer
[default0]:[rank8]: pipeline_state.run_communication()
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 160, in run_communication
[default0]:[rank8]: send_grad()
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/state.py", line 41, in __call__
[default0]:[rank8]: self.p2p.send_tensors([self.grad], to_rank=self.to_rank)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 348, in send_tensors
[default0]:[rank8]: futures = self.isend_tensors(tensors=tensors, to_rank=to_rank, tag=tag)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 295, in isend_tensors
[default0]:[rank8]: self._send_meta(tensor, to_rank=to_rank, tag=tag)
[default0]:[rank8]: File "/fsx/ferdinandmom/ferdinand-hf/bench_cluster/nanotron/src/nanotron/parallel/pipeline_parallel/p2p.py", line 221, in _send_meta
[default0]:[rank8]: dist.send(
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/c10d_logger.py", line 75, in wrapper
[default0]:[rank8]: return func(*args, **kwargs)
[default0]:[rank8]: File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/distributed_c10d.py", line 1886, in send
[default0]:[rank8]: group.send([tensor], group_dst_rank, tag).wait()
[default0]:[rank8]: torch.distributed.DistBackendError: NCCL communicator was aborted on rank 1.
W0702 19:54:26.074000 139790828439360 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 786163 closing signal SIGTERM
W0702 19:54:26.074000 139790828439360 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 786164 closing signal SIGTERM
W0702 19:54:26.075000 139790828439360 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 786165 closing signal SIGTERM
W0702 19:54:26.076000 139790828439360 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 786166 closing signal SIGTERM
W0702 19:54:26.077000 139790828439360 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 786167 closing signal SIGTERM
W0702 19:54:26.077000 139790828439360 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 786168 closing signal SIGTERM
W0702 19:54:26.078000 139790828439360 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 786169 closing signal SIGTERM
W0702 19:54:26.079000 139790828439360 torch/distributed/elastic/multiprocessing/api.py:851] Sending process 786170 closing signal SIGTERM
W0702 19:54:29.506000 139790828439360 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-171-88.ec2.internal_786089_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
W0702 19:54:29.517000 139790828439360 torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1203] The node 'ip-26-0-171-88.ec2.internal_786089_0' has failed to shutdown the rendezvous 'none' due to an error of type RendezvousConnectionError.
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 113, in _call_store
return getattr(self._store, store_op)(*args, **kwargs)
torch.distributed.DistNetworkError: Broken pipe
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/bin/torchrun", line 8, in <module>
sys.exit(main())
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 347, in wrapper
return f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 879, in main
run(args)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/run.py", line 870, in run
elastic_launch(
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 132, in __call__
return launch_agent(self._config, self._entrypoint, list(args))
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/launcher/api.py", line 254, in launch_agent
result = agent.run()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/metrics/api.py", line 123, in wrapper
result = f(*args, **kwargs)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 733, in run
result = self._invoke_run(role)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/agent/server/api.py", line 908, in _invoke_run
num_nodes_waiting = rdzv_handler.num_nodes_waiting()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1174, in num_nodes_waiting
self._state_holder.sync()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 419, in sync
get_response = self._backend.get_state()
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 73, in get_state
base64_state: bytes = self._call_store("get", self._key)
File "/fsx/ferdinandmom/miniforge3/envs/env-bench-cluster/lib/python3.10/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 115, in _call_store
raise RendezvousConnectionError(
torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
srun: error: ip-26-0-171-88: task 1: Exited with exit code 1
Consider using `hf_transfer` for faster uploads. This solution comes with some limitations. See https://huggingface.co/docs/huggingface_hub/hf_transfer for more details.
|