File size: 57,816 Bytes
522f0a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 |
---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:3221
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en
widget:
- source_sentence: • 2 x AMD EPYC 7763 64-core processors
sentences:
- 'QuickSpecs
HPE Cray XD670
Configuration Information
DA - 16896 Worldwide QuickSpecs — Version 16 — 10/7/2024
Page 22'
- 'HPE 1.8TB SAS 12G Mission Critical 10K SFF SC 3-year Warranty 512e Multi Vendor
HDD 872481-H21
Hard Drive Blank Kits
HPE Small Form Factor Hard Drive Blank Kit 666987-B21
Notes: Hard Drives require the selection of appropriate Drive Cage.
SSD Selection
To streamline the configuration process for HPE ProLiant Gen10 servers and to
provide the best product
availability, HPE recommends SSDs from the list located here: http://www.hpe.com/products/recommend
.
All SSD options listed are compatible on both the XL675d and XL645d servers, except
where explicitly
marked.
Read Intensive - 12G SAS - SFF - Solid State Drives
HPE 960GB SAS 12G Read Intensive SFF SC Value SAS Multi Vendor SSD P36997-H21
HPE 1.92TB SAS 12G Read Intensive SFF SC Value SAS Multi Vendor SSD P36999-H21
HPE 3.84TB SAS 12G Read Intensive SFF SC Value SAS Multi Vendor SSD P37001-H21
HPE 7.68TB SAS 12G Read Intensive SFF SC Value SAS Multi Vendor SSD P37003-H21
Mixed Use - 12G SAS - SFF - Solid State Drives
HPE 960GB SAS 12G Mixed Use SFF SC Value SAS Multi Vendor SSD P37005-H21
HPE 1.92TB SAS 12G Mixed Use SFF SC Value SAS Multi Vendor SSD P37011-H21
HPE 3.84TB SAS 12G Mixed Use SFF SC Value SAS Multi Vendor SSD P37017-H21
Mixed Use - 6G SATA - SFF - Solid State Drives
HPE 480GB SATA 6G Mixed Use SFF SC Multi Vendor SSD P18432-H21
HPE 960GB SATA 6G Mixed Use SFF SC Multi Vendor SSD P18434-H21
HPE 1.92TB SATA 6G Mixed Use SFF SC Multi Vendor SSD P18436-H21
HPE 3.84TB SATA 6G Mixed Use SFF SC Multi Vendor SSD P18438-H21
Read Intensive - 6G SATA - SFF - Solid State Drives
HPE 240GB SATA 6G Read Intensive SFF SC Multi Vendor SSD P18420-H21
HPE 480GB SATA 6G Read Intensive SFF SC Multi Vendor SSD P18422-H21
HPE 960GB SATA 6G Read Intensive SFF SC Multi Vendor SSD P18424-H21
HPE 1.92TB SATA 6G Read Intensive SFF SC Multi Vendor SSD P18426-H21
HPE 3.84TB SATA 6G Read Intensive SFF SC Multi Vendor SSD P18428-H21
HPE 7.68TB SATA 6G Read Intensive SFF SC Multi Vendor SSD P18430-H21
Read Intensive - NVMe - SFF - Solid State Drives
HPE 480GB NVMe Gen3 Mainstream Performance Read Intensive M.2 Multi Vendor SSD
P40513-H21
HPE 960GB NVMe Gen3 Mainstream Performance Read Intensive M.2 Multi Vendor SSD
P40514-H21
HPE 1.92TB NVMe Gen3 Mainstream Performance Read Intensive M.2 Multi Vendor SSD
P40515-H21
HPE 3.84TB NVMe Gen4 Mainstream Performance Read Intensive SFF SC U.3 Static V2
Multi Vendor SSD
P64845-H21
HPE 480GB NVMe Gen4 Mainstream Performance Read Intensive M.2 PM9A3 SSD P69543-H21
Mixed Use - NVMe - SFF - Solid State Drives
HPE 1.6TB NVMe Gen4 Mainstream Performance Mixed Use SFF SC U.3 Static V2 Multi
Vendor SSD
P65003-H21
QuickSpecs
HPE Apollo 6500 Gen10 Plus System
Additional Options
DA - 16700 Worldwide QuickSpecs — Version 25 — 6/3/2024
Page 45'
- 'Intel Xeon-Gold 6434 3.7GHz 8-core 195W Processor Kit for HPE Cray XD
P56395-
B21
Intel Xeon-Gold 5415+ 2.9GHz 8-core 150W Processor Kit for HPE Cray XD
P56391-
B21
Notes:
− "HPE Cray XD220v CPU 1 Rear FIO Heat Sink Kit" (P49855-B21) must be ordered
for 1st
Processor.
− "HPE Cray XD220v CPU 2 Front Heat Sink Kit" (P49854-B21) must be ordered for
2nd
Processor.'
- source_sentence: '- 2 x 16 GB DDR4-2933-MHz memory modules'
sentences:
- 'HPE Performance Cluster Manager 1 Node 3yr 24x7 Support Perpetual LTU Q9V60A
Notes:
− One license per node.
− Includes three years of support.
− This is a perpetual license. The software will continue working even when the
support term ends.
HPE Performance Cluster Manager FIO Software Q9V61A
Notes:
− This SKU does not include the license. Please order with Q9V60AAE.
− Order one per node
HPE Performance Cluster Manager Media Kit Q9V62A
Notes: One media kit per solution.
HPE Power Distribution Units
Power Distribution Units (PDUs) are an integral piece to this data center solution
and HPE offers several
types. Basic PDUs provide reliable power with 0U or 1U installation options. Metered
PDUs have added
intelligence to precisely track power usage and switched PDUs provide both local
and remote power
management. There are additional metered PDUs that are recommended for this solution
that are not part
of the mainstream PDU product offering. They are as follows:
HPE Switched 3-phase 66.5kVA/60309 5-wire 100A/277V 21-breaker Vertical NA PDU
R8P19A
HPE Metered 3Ph 66.5kVA/60309 100A 5-wire 480/277V Outlets (21) SDG23/Vertical
NA
PDU
879034-B21
HPE Metered 3Ph 39.9kVA/60309 60A 5-wire 480/277V Outlets (21) SDG23/Vertical
NA
PDU
880459-B21
HPE Metered 3Ph 57.6kVA/60309 100A 5-wire 80A/230V Outlets (3) C13 (18) C19/Vertical
NA PDU
880460-B21
HPE Metered 3Ph 34.5kVA/60309 60A 5-wire 48A/230V Outlets (3) C13 (18) C19/Vertical
NA
FIO PDU
880461-B21
HPE Cray Supercomputer 60A 415V 3 Phase 24 CX PDU R4N30A
HPE Mtrd 3P 69.1kVA 125A 96A230V FIO PDU 880462-B21
HPE Metered 3Ph 45.1kVA/60309 63A 5-wire 63A/230V Outlets (3) C13 (18) C19/Vertical
INTL FIO PDU
880463-B21
HPE Cray Supercomputer 63A 400V 3 Phase 24 CX PDU R4N29A
HPE G2 Metered/Switched 3Ph 17.3kVA/60309 4-wire 48A/208V Out (12) C13 (12)
C19/Vertical NA/JP PDU
P9S22A
HPE G2 Metered 3Ph 17.3kVA/60309 60A 4-wire 48A/208V Outlets (12) C13 (12)
C19/Vertical NA/JP PDU
P9R86A
HPE G2 Metered Modular 3Ph 17.3kVA/60309 60A 4-wire 48A/208V Outlets (6) C19/1U
Horizontal NA/JP PDU
P9R80A
QuickSpecs
HPE Cray XD2000
Configuration Information
DA - 16905 Worldwide QuickSpecs — Version 20 — 10/7/2024
Page 28'
- 'World''s most secure industry standard server using HPE iLO5
HPE ProLiant XL675d Gen10 Plus - Front Panel View
1. Serial number / iLO Information pull tab 4. Chassis front door lever button
2. Power Switch module 5. Drive Box 2
3. Drive Box 1 6. Dedicated iLO management port
QuickSpecs
HPE Apollo 6500 Gen10 Plus System
Overview
DA - 16700 Worldwide QuickSpecs — Version 25 — 6/3/2024
Page 2'
- '8SFF Front View - 8 SFF + optional Universal Media Bay, optical Drive, Display
Port, USB2.0, and
SATA Drive shown
1. Quick removal access panel 9. Health LED
2. Serial number/iLO information pull tab 10. NIC Status 1
3. Display Port (optional - shown) 11. Unit ID Button/LED
4. Universal Media Bay (optional): 12. USB 3.2 Gen1 port
Option1: Optical drive bay + Display port &
USB 2.0 port kit (shown)
13. Drive bays; backplanes options
Option1: 8SFF x1 Tri-Mode 24G U.3 BC
Backplane Option2: 2 SFF x4 Tri-Mode 24G U.3 BC
Drive Cage
5. USB 3.2 Gen1 port (optional - shown) Option2: 8SFF x4 Tri-Mode 24G U.3
BC
Backplane
6. Optical Drive (optional- shown)
7. iLO Service Port 14. Drive support label
8. Power On / Standby button and system power LED
Notes: 1 Front NIC LED display doesn''t support NIC LED ACT/LINK indication from
ALOM/PCIE/FLOM
NIC''s
12 LFF Front View - 12 LFF + SAS drives shown
1. Serial number/iLO information pull tab 6. NIC Status 1
2. USB 3.2 Gen1 Port 7. Unit ID Button/LED
3. iLO Service Port 8. SAS/SATA drive bays
QuickSpecs
HPE ProLiant DL320 Gen11
Overview
DA - 16919 Worldwide QuickSpecs — Version 28 — 10/7/2024
Page 2'
- source_sentence: '* 2 x PCIe x4 slots for HPE iLO 5 management per node'
sentences:
- "HPE ProLiant XL645d System Block Diagrams - PCIe GPU Configuration \n \nQuickSpecs\n\
HPE Apollo 6500 Gen10 Plus System\nStandard Features\nDA - 16700 Worldwide QuickSpecs\
\ — Version 25 — 6/3/2024\nPage 18"
- 'Date Version
History
Action Description of Change
03-Jun-2024 Version 24 Changed Additional Options section was updated.
Obsolete SKUs were removed
04-Mar-2024 Version 23 Changed Configuration Information section was updated
Obsolete SKUs were removed
04-Dec-2023 Version 22 Changed Configuration Information section was updated
Obsolete SKUs were removed
06-Nov-2023 Version 21 Changed Configuration Information section was updated
Obsolete SKUs were removed
05-Sep-2023 Version 20 Changed Configuration Information section was updated
Obsolete SKUs were removed
10-Jul-2023 Version 19 Changed Standard Features section was updated.
20-Jun-2023 Version 18 Changed Overview section was updated
03-Apr-2023 Version 17 Changed Optional Features and Configuration Information
sections
were updated
06-Feb-2023 Version 16 Changed Overview and Configuration Information sections
were
updated
05-Dec-2022 Version 15 Changed Core Options section was updated
07-Nov-2022 Version 14 Changed Configuration Information section was updated
Obsolete SKUs were removed
01-Aug-2022 Version 13 Changed Configuration Information section was updated
05-Jul-2022 Version 12 Changed Configuration Information section was updated
Obsolete SKUs were removed
16-May-2022 Version 11 Changed Configuration Information section was updated
Obsolete SKUs were removed
21-Mar-2022 Version 10 Changed Standard Features and Configuration Information
were
removed.
07-Feb-2022 Version 9 Changed Configuration Information section was updated
10-Jan-2022 Version 8 Changed Additional Options section was updated.
Obsolete SKUs were removed
01-Nov-2021 Version 7 Changed Added Software Development Tools
Overview, Standard features and Additional Options sections
were updated.
Obsolete SKUs were removed
07-Sep-2021 Version 6 Changed Additional Options section was updated.
Obsolete SKUs were removed
02-Aug-2021 Version 5 Changed Obsolete SKUs were removed
04-May-2021 Version 4 Changed Overview, Standard Features, Optional Features,
Configuration Information and Additional Options were
removed.
06-Apr-2021 Version 3 Changed Standard Features, Configuration Information, Additional
Options and Technical Specifications sections were updated.
01-Feb-2021 Version 2 Changed Overview, Standard Features, Configuration Information,
Additional Options and Technical Specifications sections were
updated.
Obsolete SKUs were removed
QuickSpecs
HPE Apollo 6500 Gen10 Plus System
Summary of Changes
DA - 16700 Worldwide QuickSpecs — Version 25 — 6/3/2024
Page 52'
- 'Storage Controller Cable Kits
HPE XL22xn Gen10+ E208ip/P408ip Cbl Kit
HPE XL225n Gen10+ SATA Cbl Kit
Notes: By default, Embedded Controller will work in AHCI Mode. If "P28417-B21
- HPE SR100i Gen10+
Software RAID" is selected, then Embedded Controller will work in SR100i Mode.
Maximum Internal StoragePer node
Drive Capacity Configuration
Hot Plug SFF SATA SSD 46TB 6 x 7.68TB
Hot Plug SFF SAS SSD 91TB 6 x 15.3TB
Hot Plug NVMe SSD (AMD) 30TB 2x 15.3TB
Hot Plug NVMe SSD (Intel) 92TB 6x 15.3TB
Notes: NVMe is x2 for Intel
Internal Storage Devices
Optional USB Mezz Riser Kit
Interfaces
KVM Serial USB Video Port (SUV)
USB Ports 3 external USB ports via SUV (2 regular USB, 1
USB management); 1 USB 3.2 Gen1 Type A Port
(external)
HPE iLO Remote Management Network Port NIC/Shares iLO network port (AMD only)
Separate
NIC and iLO ports on Intel node
Health LED 1
Power 1
UID 1
Do not remove LED 1
Industry Standard Compliance
ACPI 6.3 Compliant
PCIe 4.0 Compliant
WOL Support
Microsoft® Logo certifications
PXE Support
USB 3.0 Compliant (internal); USB 2 .0 compliant (external ports via SUV)
SMBIOS 3.2
UEFI 2.8
Redfish API
European Union Erp Lot 9 Regulation European Union (EU) eco-design regulations
for server and
storage products, known as Lot 9, establishes power thresholds for idle state,
as well as efficiency
and performance in active state which vary among configurations. HPE ProLiant
Gen10 Plus servers
QuickSpecs
HPE Apollo 2000 Gen10 Plus System
Standard Features
DA - 16526 Worldwide QuickSpecs — Version 41 — 7/1/2024
Page 14'
- source_sentence: What type of processors are supported by the HPE Cray XD665 System?
sentences:
- 'HPE Cray XD675 Server Top View
Item Description
1. 8x AMD MI300X OAM Accelerator
QuickSpecs
HPE Cray XD675
Overview
DA - 17239 Worldwide QuickSpecs — Version 4 — 8/19/2024
Page 2'
- 'HPE Cray XD665
HPE is bringing the power of supercomputing to datacenters of any size with the
HPE Cray XD665 System .
HPE Cray XD665 System is a top-performing GPU-accelerated server, delivering mixed-HPC/AI
workload
solutions to rack-scale, in a rack and roll fashion.
HPE Cray XD665 System is a 4U chassis system that contains a single 2x CPU node
with 4x Nvidia H100
Tensor Core SXM5 GPUs. It offers a complete, scalable solution for AI & HPC customers
everywhere, with
flexibility of fabric, memory, storage and operating system. HPE Cray XD665 System
provides maximum
performance for advanced HPC Simulations, AI Training and Deep Learning.
Built with Exascale-ready networking technologies, integrated storage, extensive
software portfolio and
management tools, HPE Cray XD665 Systems can enable customers to innovate and
prepare for tomorrow''s
challenges.
HPE Cray XD665 Server System Key Features
4U Single-Node Chassis (Air & Liquid-Cooled)
GPUs: 4x NVIDIA® H100 Tensor Core SXM5 GPUs providing leadership performance for
AI Training,
Deep Learning and advanced HPC simulations. PCIe GPUs are not supported on Cray
XD665.
CPUs: Support for 4 th Generation AMD® EPYC® Scalable Processors: "Genoa"
DRAM: Support for up to 24x DDR5 4800MT/s DIMMs
High-Speed Fabric: 5x PCIe Gen 5.0 Half-Height, Half-Length slots supporting Slingshot
11, Infiband
NDR and Ethernet, providing direct switchable connections between High-Speed Fabric,
GPUs, NVMe
drives and CPUs.
Storage: Up to 8 SFF NVME U.3 and 2 M.2 RAID SSDs
Power Supplies: 6x 3,000-Watt capacity per server system, providing full N+N redundancy.
PCIe Expansion: 1x HHHL PCIe 5.0, 1x OCP 3.0 expansion slot with embedded 2-port
10G Base-T
(RJ45), 1 1GbE NIC, 1x BMC Port, 1x VGA, 1x USB3.0, PWR Button/Reset/ID Button/Status
LEDs
NVIDIA and NVLink are trademarks and/or registered trademarks of NVIDIA Corporation
in the U.S. and
other countries. All third-party marks are the property of their respective owners.
AMD and EPYC are trademarks and/or registered trademarks of Advanced Micro Devices,
Inc. in the U.S.
and other countries. All third-party marks are property of their respective owners
QuickSpecs
HPE Cray Supercomputing XD665 System
Overview
DA - 17114 Worldwide QuickSpecs — Version 9 — 10/21/2024
Page 1'
- "EPYC\n7543P\n32 2.8GHz 3.7GHz 2TB 225 256MB 3200MT/s\nEPYC\n7443P\n24 2.85GHs\
\ 4.0GHz 2TB 200 128 MB 3200MT/s\nEPYC\n7313P\n16 3.0GHz 3.7GHz 2TB 155 128MB\
\ 3200MT/s\nIntel Xeon \nProcessor\nCores Base\nFrequency\nMax\nFrequenc\ny\n\
Max\nMemory\nWattage Cache\n1.5MB/cor\ne\nMemory\nXeon 8380 40 2.3GHz 3.4GHz 6TB/socket\
\ 270 60MB 3200MT/s\nXeon 8368 38 2.4GHz 3.4GHz 6TB/socket 270 57MB 3200MT/s\n\
Xeon\n8360Y\n36 2.4GHz 3.5GHz 6TB/socket 250 54MB 3200MT/s\nXeon 8358 32 2.6GHZ\
\ 3.4GHz 6TB/socket 250 48MB 3200MT/s\nXeon\n8352Y\n32 2.2GHz 3.4GHz 6TB/socket\
\ 205 48MB 3200MT/s\nXeon 6354 18 3.0GHz 3.6GHz 6TB/socket 205 39MB 3200MT/s\n\
Xeon 6348 28 2.6GHz 3.5GHz 6TB/socket 235 42MB 3200MT/s\nXeon 6346 16 3.1GHz 3.6GHz\
\ 6TB/socket 205 36MB 3200MT/s\nXeon 6338 32 2.0GHz 3.2GHz 6TB/socket 205 48MB\
\ 3200MT/s\nXeon 6330 28 2.0GHZ 3.1GHz 6TB/socket 205 42MB 3200MT/s\nXeon 6342\
\ 24 2.8GHZ 3.5GHz 6TB/socket 230 36MB 3200MT/s\nXeon\n4309Y\n8 2.8GHz 3.6GHz\
\ 6TB/socket 105 12MB 3200MT/s\nXeon 4310 12 2.1GHz 3.3GHz 6TB/socket 120 18MB\
\ 3200MT/s\nXeon 4314 16 2.4GHz 3.4GHz 6TB/socket 135 24MB 3200MT/s\nXeon 4316\
\ 20 2.3GHz 3.4GHz 6TB/socket 150 30MB 3200MT/s\nXeon\n5318Y\n24 2.1GHz 3.4GHz\
\ 6TB/socket 165 36MB 3200MT/s\nXeon 5320 26 2.2GHz 3.4GHz 6TB/socket 185 39MB\
\ 3200MT/s\nXeon\n6336Y\n24 2.4GHz 3.6GHz 6TB/socket 185 36MB 3200MT/s\nXeon\n\
5115Y\n8 3.2GHz 3.6GHz 6TB/socket 140 12MB 3200MT/s\nXeon 5317 12 3.0GHz 3.6GHZ\
\ 6TB/socket 150 18MB 3200MT/s\nXeon 6326 16 2.9GHz 3.5GHz 6TB/socket 185 24MB\
\ 3200MT/s\nXeon 6334 8 3.6GHz 3.7GHz 6TB/socket 165 18MB 3200MT/s\nChipset\n\
No Chipset - System on Chip (SoC) design\nOn System Management Chipset\nHPE iLO\
\ 5 ASIC\nRead and learn more in the iLO QuickSpecs\nQuickSpecs\nHPE Apollo\
\ 2000 Gen10 Plus System\nStandard Features\nDA - 16526 Worldwide QuickSpecs\
\ — Version 41 — 7/1/2024\nPage 9"
- source_sentence: What is the website to find services for customers purchasing from
a commercial reseller?
sentences:
- 'HPE Cray XD675 Server Top View
Item Description
1. 8x AMD MI300X OAM Accelerator
QuickSpecs
HPE Cray XD675
Overview
DA - 17239 Worldwide QuickSpecs — Version 4 — 8/19/2024
Page 2'
- 'AMD EPYC 7443P 2.85GHz 24-core 200W FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus
P38737-L21
AMD EPYC 7313P 3.0GHz 16-core 155W FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus
P38736-L21
AMD EPYC 7552 (2.2GHz/48-core/200W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24258-L21
AMD EPYC 7542 (2.9GHz/32-core/225W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24259-L21
AMD EPYC 7502 (2.5GHz/32-core/180W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24260-L21
AMD EPYC 7452 (2.35GHz/32-core/155W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24261-L21
AMD EPYC 7402 (2.8GHz/24-core/180W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24262-L21
AMD EPYC 7352 (2.3GHz/24-core/155W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24263-L21
AMD EPYC 7302 (3.0GHz/16-core/155W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24264-L21
AMD EPYC 7702P (2.0GHz/64-core/200W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24266-L21
AMD EPYC 7402P (2.8GHz/24-core/180W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24268-L21
AMD EPYC 7302P (3.0GHz/16-core/155W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24269-L21
AMD EPYC 7662 (2.0GHz/64-core/225W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24392-L21
AMD EPYC 7642 (2.3GHz/48-core/225W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24393-L21
AMD EPYC 7252 (3.1GHz/8-core/120W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus P24397-L21
AMD EPYC 7F32 (3.7GHz/8-core/180W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus
P26686-L21
AMD EPYC 7F52 (3.5GHz/16-core/240W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus
P26687-L21
AMD EPYC 7F72 (3.2GHz/24-core/240W) FIO Processor Kit for HPE ProLiant XL225n
Gen10 Plus
P26688-L21
Intel Processors - Factory Integrated Processor Kit for XL220n & XL290n
Intel Xeon-Platinum 8380 2.3GHz 40-core 270W FIO Processor Kit for HPE ProLiant
XL2x0n Gen10 Plus P36816-L21
Intel Xeon-Platinum 8368 2.4GHz 38-core 270W FIO Processor Kit for HPE ProLiant
XL2x0n Gen10 Plus P36815-L21
QuickSpecs
HPE Apollo 2000 Gen10 Plus System
Additional Options
DA - 16526 Worldwide QuickSpecs — Version 41 — 7/1/2024
Page 33'
- 'Parts and Materials
HPE will provide HPE-supported replacement parts and materials necessary to maintain
the covered hardware
product in operating condition, including parts and materials for available and
recommended engineering
improvements.
Parts and components that have reached their maximum supported lifetime and/or
the maximum usage
limitations as set forth in the manufacturer''s operating manual, product quick-specs,
or the technical product
data sheet will not be provided, repaired, or replaced as part of these services.
How to Purchase Services
Services are sold by Hewlett Packard Enterprise and Hewlett Packard Enterprise
Authorized Service Partners:
Services for customers purchasing from HPE or an enterprise reseller are quoted
using HPE order
configuration tools.
Customers purchasing from a commercial reseller can find services at
https://ssc.hpe.com/portal/site/ssc/
AI Powered and Digitally Enabled Support Experience
Achieve faster time to resolution with access to product-specific resources and
expertise through a digital and
data driven customer experience
Sign into the HPE Support Center experience, featuring streamlined self-serve
case creation and
management capabilities with inline knowledge recommendations. You will also find
personalized task alerts
and powerful troubleshooting support through an intelligent virtual agent with
seamless transition when needed
to a live support agent.
https://support.hpe.com/hpesc/public/home/signin
Consume IT On Your Terms
HPE GreenLake edge-to-cloud platform brings the cloud experience directly to
your apps and data wherever
they are-the edge, colocations, or your data center. It delivers cloud services
for on-premises IT infrastructure
specifically tailored to your most demanding workloads. With a pay-per-use, scalable,
point-and-click self-
service experience that is managed for you, HPE GreenLake edge-to-cloud platform
accelerates digital
transformation in a distributed, edge-to-cloud world.
Get faster time to market
Save on TCO, align costs to business
Scale quickly, meet unpredictable demand
Simplify IT operations across your data centers and clouds
To learn more about HPE Services, please contact your Hewlett Packard Enterprise
sales representative or
Hewlett Packard Enterprise Authorized Channel Partner. Contact information for
a representative in your area
can be found at "Contact HPE" https://www.hpe.com/us/en/contact-hpe.html
For more information
http://www.hpe.com/services
QuickSpecs
HPE Cray XD675
Service and Support
DA - 17239 Worldwide QuickSpecs — Version 4 — 8/19/2024
Page 13'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.4857142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8047619047619048
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.861904761904762
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9095238095238095
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.4857142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26825396825396824
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17238095238095236
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09095238095238094
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.4857142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8047619047619048
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.861904761904762
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9095238095238095
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.718420116457893
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.6551719576719578
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.6598918961837339
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.4857142857142857
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.8047619047619048
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.861904761904762
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9095238095238095
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.4857142857142857
name: Dot Precision@1
- type: dot_precision@3
value: 0.26825396825396824
name: Dot Precision@3
- type: dot_precision@5
value: 0.17238095238095236
name: Dot Precision@5
- type: dot_precision@10
value: 0.09095238095238094
name: Dot Precision@10
- type: dot_recall@1
value: 0.4857142857142857
name: Dot Recall@1
- type: dot_recall@3
value: 0.8047619047619048
name: Dot Recall@3
- type: dot_recall@5
value: 0.861904761904762
name: Dot Recall@5
- type: dot_recall@10
value: 0.9095238095238095
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.718420116457893
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.6551719576719578
name: Dot Mrr@10
- type: dot_map@100
value: 0.6598918961837339
name: Dot Map@100
---
# SentenceTransformer based on BAAI/bge-small-en
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) <!-- at revision 2275a7bdee235e9b4f01fa73aa60d3311983cfea -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'What is the website to find services for customers purchasing from a commercial reseller?',
'Parts and Materials\nHPE will provide HPE-supported replacement parts and materials necessary to maintain the covered hardware\nproduct in operating condition, including parts and materials for available and recommended engineering\nimprovements. \xa0\nParts and components that have reached their maximum supported lifetime and/or the maximum usage\nlimitations as set forth in the manufacturer\'s operating manual, product quick-specs, or the technical product\ndata sheet will not be provided, repaired, or replaced as part of these services.\n\xa0\nHow to Purchase Services\nServices are sold by Hewlett Packard Enterprise and Hewlett Packard Enterprise Authorized Service Partners:\nServices for customers purchasing from HPE or an enterprise reseller are quoted using HPE order\nconfiguration tools.\nCustomers purchasing from a commercial reseller can find services at\nhttps://ssc.hpe.com/portal/site/ssc/\n\xa0\nAI Powered and Digitally Enabled Support Experience\nAchieve faster time to resolution with access to product-specific resources and expertise through a digital and\ndata driven customer experience \xa0\nSign into the HPE Support Center experience, featuring streamlined self-serve case creation and\nmanagement capabilities with inline knowledge recommendations. You will also find personalized task alerts\nand powerful troubleshooting support through an intelligent virtual agent with seamless transition when needed\nto a live support agent. \xa0\nhttps://support.hpe.com/hpesc/public/home/signin\nConsume IT On Your Terms\nHPE GreenLake edge-to-cloud platform brings the cloud experience directly to your apps and data wherever\nthey are-the edge, colocations, or your data center. It delivers cloud services for on-premises IT infrastructure\nspecifically tailored to your most demanding workloads. With a pay-per-use, scalable, point-and-click self-\nservice experience that is managed for you, HPE GreenLake edge-to-cloud platform accelerates digital\ntransformation in a distributed, edge-to-cloud world.\nGet faster time to market\nSave on TCO, align costs to business\nScale quickly, meet unpredictable demand\nSimplify IT operations across your data centers and clouds\nTo learn more about HPE Services, please contact your Hewlett Packard Enterprise sales representative or\nHewlett Packard Enterprise Authorized Channel Partner. \xa0 Contact information for a representative in your area\ncan be found at "Contact HPE" https://www.hpe.com/us/en/contact-hpe.html \xa0\nFor more information\nhttp://www.hpe.com/services\nQuickSpecs\nHPE Cray XD675\nService and Support\nDA - 17239\xa0\xa0\xa0Worldwide QuickSpecs — Version 4 — 8/19/2024\nPage\xa0 13',
'HPE Cray XD675 Server Top View\nItem Description \xa0 \xa0\n1. 8x AMD MI300X OAM Accelerator \xa0 \xa0\n\xa0\nQuickSpecs\nHPE Cray XD675\nOverview\nDA - 17239\xa0\xa0\xa0Worldwide QuickSpecs — Version 4 — 8/19/2024\nPage\xa0 2',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.4857 |
| cosine_accuracy@3 | 0.8048 |
| cosine_accuracy@5 | 0.8619 |
| cosine_accuracy@10 | 0.9095 |
| cosine_precision@1 | 0.4857 |
| cosine_precision@3 | 0.2683 |
| cosine_precision@5 | 0.1724 |
| cosine_precision@10 | 0.091 |
| cosine_recall@1 | 0.4857 |
| cosine_recall@3 | 0.8048 |
| cosine_recall@5 | 0.8619 |
| cosine_recall@10 | 0.9095 |
| cosine_ndcg@10 | 0.7184 |
| cosine_mrr@10 | 0.6552 |
| **cosine_map@100** | **0.6599** |
| dot_accuracy@1 | 0.4857 |
| dot_accuracy@3 | 0.8048 |
| dot_accuracy@5 | 0.8619 |
| dot_accuracy@10 | 0.9095 |
| dot_precision@1 | 0.4857 |
| dot_precision@3 | 0.2683 |
| dot_precision@5 | 0.1724 |
| dot_precision@10 | 0.091 |
| dot_recall@1 | 0.4857 |
| dot_recall@3 | 0.8048 |
| dot_recall@5 | 0.8619 |
| dot_recall@10 | 0.9095 |
| dot_ndcg@10 | 0.7184 |
| dot_mrr@10 | 0.6552 |
| dot_map@100 | 0.6599 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 3,221 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 3 tokens</li><li>mean: 22.72 tokens</li><li>max: 80 tokens</li></ul> | <ul><li>min: 36 tokens</li><li>mean: 328.94 tokens</li><li>max: 512 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-----------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What is the maximum number of Apollo n2X00 series chassis that can fit in a 42U rack?</code> | <code>HPE Apollo 2000 Gen10 Plus System <br>HPE is bringing the power of supercomputing to datacenters of any size with the Apollo 2000 Gen10 Plus<br>system. <br>The HPE Apollo 2000 Gen10 Plus System is a dense, multi-server platform that packs incredible<br>performance and workload flexibility into a small datacenter space, while delivering the efficiencies of a<br>shared infrastructure. It is designed to provide a bridge to scale-out architecture for traditional data centers,<br>so enterprise and SME customers can achieve the space-saving value of density-optimized infrastructure in a<br>cost-effective and non-disruptive manner. <br>The Apollo 2000 Gen10 Plus offers a density optimized, shared infrastructure with a flexible scale-out<br>architecture to support a variety of workloads from remote site systems to large HPC clusters and everything<br>in between. HPE iLO5 provides built-in firmware-level server security with silicon root of trust. It can be<br>deployed cost-effectively starting with a single 2U, shared infrastructure chassis and configured with a variety<br>of storage options to meet the configuration needs of a wide variety of scale-out workloads.<br> <br>The Apollo 2000 Gen10 Plus System delivers up to four times the density of a traditional rack mount server<br>with up to four ProLiant Gen10 Plus independent servers per 2U mounted in standard racks with rear-aisle<br>serviceability access. A 42U rack fits up to 20 Apollo n2X00 series chassis accommodating up to 80 servers<br>per rack.<br>What's New <br>Support for up to four Xilinx Alveo U50 single wide GPU's in XL290n node.<br>Enables a robust stack of Intel 3 rd generation Xeon Scalable Processors to increase your power density<br>and increase datacenter efficiency. Intel AVX-512 * feature increases memory bandwidth, improves<br>frequency management to enable greater performance. Also Speed Select Technology (SST) allows<br>Core count and frequency flexibility *<br>The Direct Liquid Cooling (DLC) option for the Apollo 2000 Gen10 Plus System comes ready to plug and<br>play. Choose from either CPU only or CPU plus memory cooling options.<br>Enables flexible choices with Intel 3 rd Generation Xeon Scalable Processors and AMD 2 nd and 3 rd <br>generation EPYC Processors<br>New flexible infrastructure offers multiple storage options, 8 memory channels and 3200 MT/s memory,<br>PCIe Gen4 and support for processors over 250W for improved application performance.<br>Complete software portfolio for all customer workloads, for node to rack management, including<br>comprehensive integrated cluster management software<br>Secure from the start with firmware anchored into silicon with iLO5 and silicon root of trust for the<br>highest level of system security <br>Notes: *Available on select processors<br> <br>QuickSpecs<br>HPE Apollo 2000 Gen10 Plus System<br>Overview<br>DA - 16526 Worldwide QuickSpecs — Version 41 — 7/1/2024<br>Page 1</code> |
| <code>What is the maximum number of independent servers that can be mounted in a single 2U Apollo 2000 Gen10 Plus System chassis?</code> | <code>HPE Apollo 2000 Gen10 Plus System <br>HPE is bringing the power of supercomputing to datacenters of any size with the Apollo 2000 Gen10 Plus<br>system. <br>The HPE Apollo 2000 Gen10 Plus System is a dense, multi-server platform that packs incredible<br>performance and workload flexibility into a small datacenter space, while delivering the efficiencies of a<br>shared infrastructure. It is designed to provide a bridge to scale-out architecture for traditional data centers,<br>so enterprise and SME customers can achieve the space-saving value of density-optimized infrastructure in a<br>cost-effective and non-disruptive manner. <br>The Apollo 2000 Gen10 Plus offers a density optimized, shared infrastructure with a flexible scale-out<br>architecture to support a variety of workloads from remote site systems to large HPC clusters and everything<br>in between. HPE iLO5 provides built-in firmware-level server security with silicon root of trust. It can be<br>deployed cost-effectively starting with a single 2U, shared infrastructure chassis and configured with a variety<br>of storage options to meet the configuration needs of a wide variety of scale-out workloads.<br> <br>The Apollo 2000 Gen10 Plus System delivers up to four times the density of a traditional rack mount server<br>with up to four ProLiant Gen10 Plus independent servers per 2U mounted in standard racks with rear-aisle<br>serviceability access. A 42U rack fits up to 20 Apollo n2X00 series chassis accommodating up to 80 servers<br>per rack.<br>What's New <br>Support for up to four Xilinx Alveo U50 single wide GPU's in XL290n node.<br>Enables a robust stack of Intel 3 rd generation Xeon Scalable Processors to increase your power density<br>and increase datacenter efficiency. Intel AVX-512 * feature increases memory bandwidth, improves<br>frequency management to enable greater performance. Also Speed Select Technology (SST) allows<br>Core count and frequency flexibility *<br>The Direct Liquid Cooling (DLC) option for the Apollo 2000 Gen10 Plus System comes ready to plug and<br>play. Choose from either CPU only or CPU plus memory cooling options.<br>Enables flexible choices with Intel 3 rd Generation Xeon Scalable Processors and AMD 2 nd and 3 rd <br>generation EPYC Processors<br>New flexible infrastructure offers multiple storage options, 8 memory channels and 3200 MT/s memory,<br>PCIe Gen4 and support for processors over 250W for improved application performance.<br>Complete software portfolio for all customer workloads, for node to rack management, including<br>comprehensive integrated cluster management software<br>Secure from the start with firmware anchored into silicon with iLO5 and silicon root of trust for the<br>highest level of system security <br>Notes: *Available on select processors<br> <br>QuickSpecs<br>HPE Apollo 2000 Gen10 Plus System<br>Overview<br>DA - 16526 Worldwide QuickSpecs — Version 41 — 7/1/2024<br>Page 1</code> |
| <code>What is the processor type supported by the HPE Apollo n2800 Gen10 Plus 24 SFF Flexible CTO chassis?</code> | <code>HPE Apollo n2600 Gen10 Plus SFF CTO Chassis supports both Intel and AMD based server nodes<br>HPE Apollo n2800 Gen10 Plus 24 SFF Flexible CTO chassis supports Intel based server nodes<br>Backplane selection determines number and type of drives supported<br>Item Description Item Description<br>1 SFF hot-plug drives 3 Health LED<br>2 Serial number/iLO information pull tab 4 UID button LED<br> <br>Chassis Rear Panel Components - 4 x 1U nodes<br>Item Description Item Description<br>1 Server 3 & 4 4 iLO Ports<br>2 HPE Apollo Platform Manager (APM) 2.0 port 5 Server 1 & 2<br>3 Power supply 1 & 2 6 Optional Rack Consolidation Module (RCM)<br> <br> <br>QuickSpecs<br>HPE Apollo 2000 Gen10 Plus System<br>Overview<br>DA - 16526 Worldwide QuickSpecs — Version 41 — 7/1/2024<br>Page 2</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `num_train_epochs`: 20
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 20
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | cosine_map@100 |
|:-------:|:----:|:--------------:|
| 1.0 | 7 | 0.4864 |
| 2.0 | 14 | 0.5209 |
| 3.0 | 21 | 0.5131 |
| 4.0 | 28 | 0.5047 |
| 5.0 | 35 | 0.5480 |
| 6.0 | 42 | 0.5808 |
| 7.0 | 49 | 0.5950 |
| 7.1429 | 50 | 0.5975 |
| 8.0 | 56 | 0.6145 |
| 9.0 | 63 | 0.6268 |
| 10.0 | 70 | 0.6292 |
| 11.0 | 77 | 0.6385 |
| 12.0 | 84 | 0.6445 |
| 13.0 | 91 | 0.6279 |
| 14.0 | 98 | 0.6296 |
| 14.2857 | 100 | 0.6321 |
| 15.0 | 105 | 0.6317 |
| 16.0 | 112 | 0.6401 |
| 17.0 | 119 | 0.6590 |
| 18.0 | 126 | 0.6562 |
| 19.0 | 133 | 0.6599 |
### Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.2.2+cu121
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |