File size: 1,560 Bytes
59715ca
 
 
 
 
8bceb6a
59715ca
 
9c14dfa
0cb5bd7
9c14dfa
 
 
 
 
 
 
 
29250af
46a444a
 
 
 
 
 
9c14dfa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29250af
 
 
9c011d6
 
b1f0cf2
9c011d6
 
 
9c14dfa
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
---
language:
- tr
tags:
- translation
license: mit
---

## About the model
It is a Turkish bert-based model created to determine the types of bullying that people use against each other in social media.
Included classes;

- Nötr
- Kızdırma/Hakaret
- Cinsiyetçilik
- Irkçılık

3388 tweets were used in the training of the model. Accordingly, the success rates in education are as follows;

|        | Cinsiyetçilik | Irkçılık | Kızdırma | Nötr | 
| ------ | ------  | ------ | ------  | ------ |
| Precision | 0.925 | 0.878 | 0.824 | 0.915 |
| Recall  | 0.831 | 0.896 | 0.843 | 0.935 |
| F1 Score | 0.875 | 0.887 | 0.833 | 0.925 |
Accuracy : 0.886

## Example
```sh
from transformers import AutoTokenizer, TextClassificationPipeline, TFBertForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("nanelimon/bert-base-turkish-bullying")
model = TFBertForSequenceClassification.from_pretrained("nanelimon/bert-base-turkish-bullying", from_pt=True)
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)

print(pipe('Bu bir denemedir hadi sende dene!'))
```
Result;
```sh
[{'label': 'Nötr', 'score': 0.999175488948822}]
```
- label= It shows which class the sent Turkish text belongs to according to the model.
- score= It shows the compliance rate of the Turkish text sent to the label found.

## Authors
- Seyma SARIGIL: seymasargil@gmail.com
- Elif SARIGIL KARA: elifsarigil@gmail.com
- Murat KOKLU: mkoklu@selcuk.edu.tr
- Alaaddin Erdinç DAL: aerdincdal@icloud.com


## License

gpl-3.0

**Free Software, Hell Yeah!**