File size: 1,560 Bytes
59715ca 8bceb6a 59715ca 9c14dfa 0cb5bd7 9c14dfa 29250af 46a444a 9c14dfa 29250af 9c011d6 b1f0cf2 9c011d6 9c14dfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
---
language:
- tr
tags:
- translation
license: mit
---
## About the model
It is a Turkish bert-based model created to determine the types of bullying that people use against each other in social media.
Included classes;
- Nötr
- Kızdırma/Hakaret
- Cinsiyetçilik
- Irkçılık
3388 tweets were used in the training of the model. Accordingly, the success rates in education are as follows;
| | Cinsiyetçilik | Irkçılık | Kızdırma | Nötr |
| ------ | ------ | ------ | ------ | ------ |
| Precision | 0.925 | 0.878 | 0.824 | 0.915 |
| Recall | 0.831 | 0.896 | 0.843 | 0.935 |
| F1 Score | 0.875 | 0.887 | 0.833 | 0.925 |
Accuracy : 0.886
## Example
```sh
from transformers import AutoTokenizer, TextClassificationPipeline, TFBertForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("nanelimon/bert-base-turkish-bullying")
model = TFBertForSequenceClassification.from_pretrained("nanelimon/bert-base-turkish-bullying", from_pt=True)
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer)
print(pipe('Bu bir denemedir hadi sende dene!'))
```
Result;
```sh
[{'label': 'Nötr', 'score': 0.999175488948822}]
```
- label= It shows which class the sent Turkish text belongs to according to the model.
- score= It shows the compliance rate of the Turkish text sent to the label found.
## Authors
- Seyma SARIGIL: seymasargil@gmail.com
- Elif SARIGIL KARA: elifsarigil@gmail.com
- Murat KOKLU: mkoklu@selcuk.edu.tr
- Alaaddin Erdinç DAL: aerdincdal@icloud.com
## License
gpl-3.0
**Free Software, Hell Yeah!** |