File size: 2,411 Bytes
e93d129 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: mit
base_model: facebook/bart-large-cnn
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: bart-large-cnn-finetuned-scope1-summarization
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-large-cnn-finetuned-scope1-summarization
This model is a fine-tuned version of [facebook/bart-large-cnn](https://huggingface.co/facebook/bart-large-cnn) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0612
- Rouge1: 55.9874
- Rouge2: 41.0458
- Rougel: 47.6072
- Rougelsum: 47.5635
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| No log | 1.0 | 17 | 0.1238 | 46.7806 | 30.4394 | 36.8259 | 36.8757 |
| 0.4762 | 2.0 | 34 | 0.1058 | 49.4907 | 32.4075 | 39.352 | 39.161 |
| 0.4762 | 3.0 | 51 | 0.0899 | 54.1557 | 35.6198 | 41.6488 | 41.4013 |
| 0.1104 | 4.0 | 68 | 0.0867 | 53.237 | 36.766 | 42.8508 | 42.7151 |
| 0.1104 | 5.0 | 85 | 0.0773 | 57.4084 | 39.3354 | 45.068 | 44.9505 |
| 0.0914 | 6.0 | 102 | 0.0736 | 56.9111 | 41.3118 | 48.1607 | 47.9965 |
| 0.0914 | 7.0 | 119 | 0.0699 | 58.6135 | 42.3985 | 48.7923 | 48.4873 |
| 0.0785 | 8.0 | 136 | 0.0673 | 59.5593 | 43.9205 | 51.7275 | 51.5617 |
| 0.0785 | 9.0 | 153 | 0.0618 | 62.0583 | 47.3928 | 53.3198 | 53.1472 |
| 0.0702 | 10.0 | 170 | 0.0612 | 55.9874 | 41.0458 | 47.6072 | 47.5635 |
### Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|