File size: 2,440 Bytes
6e5d012 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
base_model: luqh/ClinicalT5-base
tags:
- generated_from_trainer
model-index:
- name: medical_jargons_simplifierT5
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# medical_jargons_simplifierT5
This model is a fine-tuned version of [luqh/ClinicalT5-base](https://huggingface.co/luqh/ClinicalT5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4734
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 3.3369 | 0.2198 | 500 | 0.5700 |
| 0.601 | 0.4396 | 1000 | 0.5279 |
| 0.572 | 0.6593 | 1500 | 0.5137 |
| 0.5556 | 0.8791 | 2000 | 0.5051 |
| 0.5132 | 1.0989 | 2500 | 0.4991 |
| 0.5406 | 1.3187 | 3000 | 0.4941 |
| 0.513 | 1.5385 | 3500 | 0.4909 |
| 0.5328 | 1.7582 | 4000 | 0.4880 |
| 0.5304 | 1.9780 | 4500 | 0.4846 |
| 0.5215 | 2.1978 | 5000 | 0.4825 |
| 0.5296 | 2.4176 | 5500 | 0.4811 |
| 0.5143 | 2.6374 | 6000 | 0.4799 |
| 0.4768 | 2.8571 | 6500 | 0.4780 |
| 0.513 | 3.0769 | 7000 | 0.4775 |
| 0.4933 | 3.2967 | 7500 | 0.4761 |
| 0.4891 | 3.5165 | 8000 | 0.4761 |
| 0.5022 | 3.7363 | 8500 | 0.4749 |
| 0.523 | 3.9560 | 9000 | 0.4743 |
| 0.5233 | 4.1758 | 9500 | 0.4742 |
| 0.5004 | 4.3956 | 10000 | 0.4738 |
| 0.4817 | 4.6154 | 10500 | 0.4733 |
| 0.4848 | 4.8352 | 11000 | 0.4734 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.1.2
- Datasets 2.19.2
- Tokenizers 0.19.1
|