|
## Overview |
|
This model is a finetuned version of [mt5-small](https://huggingface.co/google/mt5-small) for question paraphrasing task in Turkish. As a generator model, its capabilities are currently investigated and there is an ongoing effort to further improve it. You can raise an issue [in this GitHub repo](https://github.com/monatis/tqp) for any comments, suggestions or interesting findings when using this model. |
|
|
|
## Usage |
|
You can generate 5 paraphrases for the input question with The simple code below. |
|
|
|
```python |
|
from transformers import AutoTokenizer, T5ForConditionalGeneration |
|
model_name = "mys/mt5-small-turkish-question-paraphrasing" |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = T5ForConditionalGeneration.from_pretrained(model_name) |
|
|
|
tokens = tokenizer.encode_plus("Yarın toplantı kaçta başlıyor?", return_tensors='pt') |
|
paraphrases = model.generate(tokens['input_ids'], max_length=128, num_return_sequences=5, num_beams=5) |
|
tokenizer.batch_decode(paraphrases, skip_special_tokens=True) |
|
``` |
|
|
|
And the output will be something like: |
|
```shell |
|
['Yarın toplantı ne zaman başlıyor?', |
|
'Yarın toplantı saat kaçta başlıyor?', |
|
'Yarın toplantı saat kaçta başlar?', |
|
'Yarın toplantı ne zaman başlayacak?', |
|
'Yarın toplantı ne zaman başlar?'] |
|
``` |
|
|
|
## Dataset |
|
I used [TQP dataset V0.1](https://github.com/monatis/tqp) that I've published just recently. This model should be taken as as a baseline model for TQP dataset. A cleaning and further improvements in the dataset and an elaborate hyperparameter tuning may boost the performance. |
|
|
|
## Citation |
|
If you find the dataset or model useful for your research, [consider citation](https://zenodo.org/record/4719801#.YIbI45AzZPZ). |