File size: 15,563 Bytes
026c780 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 |
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4be6c43e50>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4be6c43ee0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4be6c43f70>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4be6c47040>",
"_build": "<function ActorCriticPolicy._build at 0x7f4be6c470d0>",
"forward": "<function ActorCriticPolicy.forward at 0x7f4be6c47160>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4be6c471f0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4be6c47280>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f4be6c47310>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4be6c473a0>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4be6c47430>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4be6c474c0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f4be6c44a00>"
},
"verbose": 1,
"policy_kwargs": {},
"num_timesteps": 524288,
"_total_timesteps": 500000,
"_num_timesteps_at_start": 0,
"seed": null,
"action_noise": null,
"start_time": 1682807386104681055,
"learning_rate": 0.0003,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3Fyb21haWtvL21hbWJhZm9yZ2UvZW52cy9weXRvcmNoX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9xcm9tYWlrby9tYW1iYWZvcmdlL2VudnMvcHl0b3JjaF9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADM7aTyR4hc/EuIFvoW6sr7HWUG8/YegPAAAAAAAAAAAwBXCPU58oz/RIDI/laELv222BD32OU4+AAAAAAAAAACVupi+vwVGP1GxHL7nW/S+x+K+vhMwhD4AAAAAAAAAAJoXP735CKg/KqVevgG59L4vbZ+9ZAUMvQAAAAAAAAAAGsEFvcNNBrrR/5e1705aLkgzLrscXKw0AACAPwAAAAAzL6U7KRxmPQYre76l8IS+F5obvjiJZj0AAAAAAAAAADOTrTp5dLk/KDwmPUJrwz4dqNG7XmFjvQAAAAAAAAAAZpntvEiXm7qZhJc3cfmLMlFAD7qH3q62AACAPwAAgD+aD169PcUWuw4geLopqBQ8O/DgO4wYBr0AAIA/AACAP2ZmNbpc81G6lrdJshNr6zBUNT26cqJJMwAAgD8AAIA/8yCyPTUxsz965g4/d+hVvgT5iT3Tdag+AAAAAAAAAADNqPI7bEmBu3NcQzw17Io89fCevGo9bj0AAIA/AACAP8DAgT0cYhS8viKYPcDyHT0VGJ290rT+PQAAgD8AAIA/mssFPHEEXbsFc2s76/mRPDYiirzVcHo9AACAPwAAgD8AIw49AS2HPca6o7wwo5G+nqi+u3duHj0AAAAAAAAAADP69T1nBo8+bdiKvrcIrr4UceU7IrqhvAAAAAAAAAAA6gCjPuoX9T5bCCe+S8m7vm8mSz6004K9AAAAAAAAAADzR20+lJSKPxeFEj+dr7O+AUCiPq3mUT4AAAAAAAAAAADkiD1Vmn8+o9XavZRXkL6Zxh49ncqYPAAAAAAAAAAAmjXoPd5emj82thA/wGDAvnoz5j3yspE+AAAAAAAAAACAR9s9E2g1P/buqzw9c8m+Ow6vPWzrkL0AAAAAAAAAACYqJ77snxY+vU0SPhlOuL7wwWq83vGQPAAAAAAAAAAAgNNmPUPXaLywKDU92wQOvtt0Mr2t2gu/AACAPwAAgD9mn6A8QbSuP2+cHT6MdaO+YkzyPH6XDz4AAAAAAAAAADM9qjwjfys9MvmDvZoklL6gBDW9eKg+PAAAAAAAAAAAmqMTPJFNgj+qkG+9hXgIv0gpfT0ewVY8AAAAAAAAAAAzCQe94QSGut0xVbRQJQywAHsIumqInDMAAIA/AACAP3PtWT4JPx49ehR/OzujCr1MY6w+h/YGvgAAAAAAAAAAzbRqu1Igt7kzw1k38NWVMlBtELr7fX22AACAPwAAgD+amJ+8jy4Jun77lrU8jbsvU7fiu7D3tTQAAIA/AACAPwD6er19drk/F4kTv1YqST2r49C7RxEgvgAAAAAAAAAAhr92vnzlaD8QpWa+imIKv0aNg75FFew9AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
},
"_last_original_obs": null,
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.04857599999999995,
"_stats_window_size": 100,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVThAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI8FLqkjEDcUCUhpRSlIwBbJRNBgGMAXSUR0CU0JHvc8DCdX2UKGgGaAloD0MI8SkAxvPScECUhpRSlGgVS/toFkdAlNDj3/Pw/nV9lChoBmgJaA9DCBDLZg7JT3FAlIaUUpRoFU0hAWgWR0CU0OwOvt+kdX2UKGgGaAloD0MITihEwGHsckCUhpRSlGgVTWwBaBZHQJTRNvZRKpV1fZQoaAZoCWgPQwjCMjZ0s0xuQJSGlFKUaBVL+2gWR0CU0YCHARChdX2UKGgGaAloD0MICisVVBQgcECUhpRSlGgVTRIBaBZHQJTRiJ0nw5N1fZQoaAZoCWgPQwieXb71YQdyQJSGlFKUaBVNCwFoFkdAlNGgy6+WW3V9lChoBmgJaA9DCDfEeM3rLHNAlIaUUpRoFU0tAWgWR0CU0ajFAE+xdX2UKGgGaAloD0MI1ULJ5FRPcECUhpRSlGgVS+hoFkdAlNIhWcSXdHV9lChoBmgJaA9DCEDZlCu8S3JAlIaUUpRoFUvzaBZHQJTSQGQjlgd1fZQoaAZoCWgPQwjrOH6oNNpuQJSGlFKUaBVL6mgWR0CU0kFQEZBLdX2UKGgGaAloD0MIZJXSM/08ckCUhpRSlGgVTQEBaBZHQJTSbwVj7Q91fZQoaAZoCWgPQwjB/uvc9IVyQJSGlFKUaBVNFQFoFkdAlNKnIhhYvHV9lChoBmgJaA9DCIDY0qMpN3JAlIaUUpRoFU0KAWgWR0CU00VGTcIrdX2UKGgGaAloD0MIa0QwDi4rcECUhpRSlGgVS+hoFkdAlNNak2xY73V9lChoBmgJaA9DCByxFp+Cx29AlIaUUpRoFU0IAWgWR0CU0+UYsNDudX2UKGgGaAloD0MI95Fbky4OckCUhpRSlGgVS+RoFkdAlNPtqYZ2p3V9lChoBmgJaA9DCL+CNGPRk29AlIaUUpRoFUvoaBZHQJTT7dcjZ+R1fZQoaAZoCWgPQwhv8lt0MutwQJSGlFKUaBVNMAFoFkdAlNP1wT/Q0HV9lChoBmgJaA9DCHh95qyPdHNAlIaUUpRoFUv2aBZHQJTT+72+PBB1fZQoaAZoCWgPQwikpl1Ms0tvQJSGlFKUaBVL5GgWR0CU1EIJZ4fPdX2UKGgGaAloD0MIbF1qhP6dcUCUhpRSlGgVTSYBaBZHQJTUZhuwX691fZQoaAZoCWgPQwgYlGk0ecFxQJSGlFKUaBVNvQFoFkdAlNSpW/8EV3V9lChoBmgJaA9DCCj0+pP4N3FAlIaUUpRoFUvgaBZHQJTVIUeuFHt1fZQoaAZoCWgPQwgL68a7I8hRQJSGlFKUaBVN6ANoFkdAlNWMdYGMXXV9lChoBmgJaA9DCKYnLPFAWnJAlIaUUpRoFUvnaBZHQJTVpB8hLXd1fZQoaAZoCWgPQwi+MQQARx1vQJSGlFKUaBVNDwFoFkdAlNYOloDgZXV9lChoBmgJaA9DCOPHmLuWW3JAlIaUUpRoFU0WAWgWR0CU1j6ciGFjdX2UKGgGaAloD0MIpikCnF66cECUhpRSlGgVS/1oFkdAlNZvoJRfnnV9lChoBmgJaA9DCJ+vWS7b4XJAlIaUUpRoFU0MAWgWR0CU10DDTBqLdX2UKGgGaAloD0MIeZEJ+HWDcECUhpRSlGgVS+ZoFkdAlNfVotcv/XV9lChoBmgJaA9DCLFppRAIF3BAlIaUUpRoFUveaBZHQJTX5qHoHLR1fZQoaAZoCWgPQwhkQPZ6NzxzQJSGlFKUaBVL/GgWR0CU1+bi6xxDdX2UKGgGaAloD0MIjKGcaNeMc0CUhpRSlGgVTREBaBZHQJTYBg3Lmp51fZQoaAZoCWgPQwjZmULntZJsQJSGlFKUaBVL9mgWR0CU2AzEaVD8dX2UKGgGaAloD0MIH9rHCj7zcUCUhpRSlGgVTQgBaBZHQJTYDRPXTVl1fZQoaAZoCWgPQwi+amXCb65xQJSGlFKUaBVNAwFoFkdAlNhd0zTF2nV9lChoBmgJaA9DCH0h5Ly/GnFAlIaUUpRoFUvsaBZHQJTYXWhAWzp1fZQoaAZoCWgPQwhu+N10yztzQJSGlFKUaBVL9mgWR0CU2KR64UeudX2UKGgGaAloD0MITOMXXgkscECUhpRSlGgVS/JoFkdAlNj0Xxe9jHV9lChoBmgJaA9DCLyWkA/6LXFAlIaUUpRoFUv5aBZHQJTZQTFl05l1fZQoaAZoCWgPQwh0KENVjM9wQJSGlFKUaBVNAgFoFkdAlNl+CoS+QHV9lChoBmgJaA9DCJsCmZ0FG3JAlIaUUpRoFUv/aBZHQJTZlFUhmoR1fZQoaAZoCWgPQwigF+5cmGRxQJSGlFKUaBVL52gWR0CU2boXbdrPdX2UKGgGaAloD0MIGVWGcTdYckCUhpRSlGgVTQMBaBZHQJTZ4miQDFJ1fZQoaAZoCWgPQwgEBHP0OF9yQJSGlFKUaBVL4WgWR0CU2hCAMDwIdX2UKGgGaAloD0MIL7/TZAZIcUCUhpRSlGgVTTUBaBZHQJTaKqcVgx91fZQoaAZoCWgPQwhkAn6NZG5wQJSGlFKUaBVL42gWR0CU2oP9kz42dX2UKGgGaAloD0MIZktWRThhcECUhpRSlGgVS/doFkdAlNqYYvWYnnV9lChoBmgJaA9DCHdJnBVRi29AlIaUUpRoFUv3aBZHQJTapvrGBFx1fZQoaAZoCWgPQwhTk+AN6ZxyQJSGlFKUaBVNBgFoFkdAlNr9gWrOq3V9lChoBmgJaA9DCIWVCirqSXFAlIaUUpRoFU0HAWgWR0CU2v4KQaJidX2UKGgGaAloD0MInfNTHEf4cUCUhpRSlGgVTQUBaBZHQJTbRaTwDvF1fZQoaAZoCWgPQwgAOPbsufVwQJSGlFKUaBVNLgFoFkdAlNt/9LpRoHV9lChoBmgJaA9DCKku4GUGU3FAlIaUUpRoFUvzaBZHQJTboYMvysl1fZQoaAZoCWgPQwhdaoR+Ju1yQJSGlFKUaBVL+WgWR0CU3C/r0J4TdX2UKGgGaAloD0MIOrAcIQMfbUCUhpRSlGgVS/loFkdAlNy61G9YfXV9lChoBmgJaA9DCGhYjLpW429AlIaUUpRoFU0PAWgWR0CU3OGHYYixdX2UKGgGaAloD0MIv30dOKfScUCUhpRSlGgVTUsBaBZHQJTdlfTkQwt1fZQoaAZoCWgPQwhupGyR9LFwQJSGlFKUaBVNEQFoFkdAlN3SMo+fRXV9lChoBmgJaA9DCLExryPOvXBAlIaUUpRoFUveaBZHQJTd9cv/R3N1fZQoaAZoCWgPQwhznUZa6otyQJSGlFKUaBVL82gWR0CU3nBEa2nbdX2UKGgGaAloD0MIkGeXb/00cUCUhpRSlGgVS/xoFkdAlN6nlXA/LXV9lChoBmgJaA9DCJRMTu2MdHBAlIaUUpRoFUv9aBZHQJTe3wCr92p1fZQoaAZoCWgPQwgMWd3quV1tQJSGlFKUaBVL8WgWR0CU3uWKMvRJdX2UKGgGaAloD0MIwELmyiDUcECUhpRSlGgVS/toFkdAlN82j4593XV9lChoBmgJaA9DCD+Ne/Mbz3BAlIaUUpRoFU0NAWgWR0CU3z5fMOf/dX2UKGgGaAloD0MIcJUnEDZmckCUhpRSlGgVS9toFkdAlN9FfeDWb3V9lChoBmgJaA9DCLoyqDb4aXJAlIaUUpRoFU0lAWgWR0CU31ZLZi/gdX2UKGgGaAloD0MI9dbAVgnlcECUhpRSlGgVS+doFkdAlN/4lIEr5XV9lChoBmgJaA9DCLSOqibIj3FAlIaUUpRoFU0YAWgWR0CU4F03wTdtdX2UKGgGaAloD0MI0bGDSlw8b0CUhpRSlGgVTTQBaBZHQJTggUM5OrR1fZQoaAZoCWgPQwhyhuKON9JxQJSGlFKUaBVL9WgWR0CU4IizcAR1dX2UKGgGaAloD0MI3sZmR2rPckCUhpRSlGgVS/NoFkdAlOCl3t8eCHV9lChoBmgJaA9DCL2Pozlyl3FAlIaUUpRoFU0ZAWgWR0CU4LrMkhRqdX2UKGgGaAloD0MIPUZ55qUhcUCUhpRSlGgVTYsBaBZHQJThKE7GNrF1fZQoaAZoCWgPQwhRg2kYfvdxQJSGlFKUaBVL7WgWR0CU4SjFQ2uQdX2UKGgGaAloD0MIiNo2jMI8cUCUhpRSlGgVTQEBaBZHQJThNwvQF9t1fZQoaAZoCWgPQwgxBtZxfI1wQJSGlFKUaBVL3mgWR0CU4YVCXyAhdX2UKGgGaAloD0MIbXTOT3EcckCUhpRSlGgVTRQBaBZHQJThzzpX6qN1fZQoaAZoCWgPQwg4aRoUDW5yQJSGlFKUaBVNBwFoFkdAlOJPmT1TSHV9lChoBmgJaA9DCMtMaf2t1W9AlIaUUpRoFUv8aBZHQJTijRPXTVl1fZQoaAZoCWgPQwihEWxcv4VxQJSGlFKUaBVNFwFoFkdAlOLBJEpiJHV9lChoBmgJaA9DCG76sx8pxHBAlIaUUpRoFUv1aBZHQJTjGHUMG5d1fZQoaAZoCWgPQwjxuRPsf9hwQJSGlFKUaBVNMwFoFkdAlOMgOz6acHV9lChoBmgJaA9DCHnJ/+Svb3FAlIaUUpRoFU03AWgWR0CU40mR/3FldX2UKGgGaAloD0MIJJur5vnBcUCUhpRSlGgVTQIBaBZHQJTkJsdkrgB1fZQoaAZoCWgPQwgyHTo9781vQJSGlFKUaBVNDAFoFkdAlORIpDu0C3V9lChoBmgJaA9DCKMjufxHWnBAlIaUUpRoFUv0aBZHQJTkdBnjABV1fZQoaAZoCWgPQwgWak3zDuFvQJSGlFKUaBVL7WgWR0CU5U+4LCvYdX2UKGgGaAloD0MI9gmgGJl2ckCUhpRSlGgVS/hoFkdAlOVwMMI/q3V9lChoBmgJaA9DCH6pnzcVzHFAlIaUUpRoFUvraBZHQJTlf6rNnoR1fZQoaAZoCWgPQwjrc7UVe+hyQJSGlFKUaBVNIAFoFkdAlOYtALRa5nV9lChoBmgJaA9DCD+sN2pFvnBAlIaUUpRoFU0NAWgWR0CU5opiqhlEdX2UKGgGaAloD0MIpFTCEzrucECUhpRSlGgVTQMBaBZHQJTmo065oXd1fZQoaAZoCWgPQwjH1ciudItwQJSGlFKUaBVNCQFoFkdAlObNShrWRXV9lChoBmgJaA9DCBeARunSw3FAlIaUUpRoFUvxaBZHQJTm1ssQNCt1fZQoaAZoCWgPQwgFTraBO0w4QJSGlFKUaBVLyGgWR0CU5uV/+bVjdX2UKGgGaAloD0MIG5/J/vnLcUCUhpRSlGgVS+BoFkdAlObuC5EtunV9lChoBmgJaA9DCNRlMbH5snJAlIaUUpRoFU1CAWgWR0CU5yIK+i8GdWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 296,
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": null
},
"n_envs": 32,
"n_steps": 2048,
"gamma": 0.999,
"gae_lambda": 0.98,
"ent_coef": 0.01,
"vf_coef": 0.5,
"max_grad_norm": 0.5,
"batch_size": 256,
"n_epochs": 8,
"clip_range": {
":type:": "<class 'function'>",
":serialized:": "gAWVAQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3Fyb21haWtvL21hbWJhZm9yZ2UvZW52cy9weXRvcmNoX3JsL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS9xcm9tYWlrby9tYW1iYWZvcmdlL2VudnMvcHl0b3JjaF9ybC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"clip_range_vf": null,
"normalize_advantage": true,
"target_kl": null
} |