File size: 8,902 Bytes
3133fdb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import tempfile
import unittest
import unittest.mock
from contextlib import ExitStack
from pathlib import Path
import torch
from parameterized import parameterized
from pytorchvideo.data.dataset_manifest_utils import VideoClipInfo, VideoDatasetType
from pytorchvideo.data.domsev import (
_get_overlap_for_time_range_pair,
_seconds_to_frame_index,
DomsevVideoDataset,
LabelData,
)
from pytorchvideo.data.utils import save_dataclass_objs_to_headered_csv
from utils import (
get_encoded_video_infos,
get_flat_video_frames,
MOCK_VIDEO_IDS,
MOCK_VIDEO_INFOS,
)
class TestDomsevVideoDataset(unittest.TestCase):
# video_id: str
# start_time: float # Start time of the label, in seconds
# stop_time: float # Stop time of the label, in seconds
# start_frame: int # 0-indexed ID of the start frame (inclusive)
# stop_frame: int # 0-index ID of the stop frame (inclusive)
# label_id: int
# label_name: str
LABELS_DATA = {
MOCK_VIDEO_IDS[0]: [
LabelData(
MOCK_VIDEO_IDS[0],
0.0,
6.0,
1,
181,
1,
"walking",
),
LabelData(
MOCK_VIDEO_IDS[0],
6.0333333,
10.0,
182,
301,
2,
"running",
),
LabelData(
MOCK_VIDEO_IDS[0],
10.033333,
20.0,
302,
601,
0,
"none",
),
],
MOCK_VIDEO_IDS[1]: [
LabelData(
MOCK_VIDEO_IDS[1],
3.0,
5.0,
181,
301,
7,
"cooking",
),
],
MOCK_VIDEO_IDS[2]: [
LabelData(
MOCK_VIDEO_IDS[2],
100.0,
200.0,
3001,
6001,
9,
"observing",
),
],
MOCK_VIDEO_IDS[3]: [
LabelData(
MOCK_VIDEO_IDS[3],
10.0,
20.0,
901,
1801,
5,
"driving",
),
],
}
def setUp(self):
pass
def test_seconds_to_frame_index(self):
self.assertEqual(_seconds_to_frame_index(10.56, 1, zero_indexed=True), 10)
self.assertEqual(_seconds_to_frame_index(10.56, 1, zero_indexed=False), 11)
self.assertEqual(_seconds_to_frame_index(9.99, 1, zero_indexed=True), 9)
self.assertEqual(_seconds_to_frame_index(9.99, 1, zero_indexed=False), 10)
self.assertEqual(_seconds_to_frame_index(1.01, 10, zero_indexed=True), 10)
self.assertEqual(_seconds_to_frame_index(1.01, 10, zero_indexed=False), 11)
def test_get_overlap_for_time_range_pair(self):
self.assertEqual(_get_overlap_for_time_range_pair(0, 1, 0.1, 0.2), (0.1, 0.2))
self.assertEqual(_get_overlap_for_time_range_pair(0.1, 0.2, 0, 1), (0.1, 0.2))
self.assertEqual(_get_overlap_for_time_range_pair(0, 1, 0.9, 1.1), (0.9, 1.0))
self.assertEqual(_get_overlap_for_time_range_pair(0, 0.2, 0.1, 1), (0.1, 0.2))
@parameterized.expand([(VideoDatasetType.Frame,), (VideoDatasetType.EncodedVideo,)])
def test__len__(self, dataset_type):
with tempfile.TemporaryDirectory(prefix=f"{TestDomsevVideoDataset}") as tempdir:
tempdir = Path(tempdir)
video_info_file = tempdir / "test_video_info.csv"
save_dataclass_objs_to_headered_csv(
list(MOCK_VIDEO_INFOS.values()), video_info_file
)
label_file = tempdir / "activity_video_info.csv"
labels = []
for label_list in self.LABELS_DATA.values():
for label_data in label_list:
labels.append(label_data)
save_dataclass_objs_to_headered_csv(labels, label_file)
video_data_manifest_file_path = (
tempdir / "video_data_manifest_file_path.json"
)
with ExitStack() as stack:
if dataset_type == VideoDatasetType.Frame:
video_data_dict = get_flat_video_frames(tempdir, "jpg")
elif dataset_type == VideoDatasetType.EncodedVideo:
video_data_dict = get_encoded_video_infos(tempdir, stack)
save_dataclass_objs_to_headered_csv(
list(video_data_dict.values()), video_data_manifest_file_path
)
video_ids = list(self.LABELS_DATA)
dataset = DomsevVideoDataset(
video_data_manifest_file_path=str(video_data_manifest_file_path),
video_info_file_path=str(video_info_file),
labels_file_path=str(label_file),
dataset_type=dataset_type,
clip_sampler=lambda x, y: [
VideoClipInfo(video_ids[i // 2], i * 2.0, i * 2.0 + 0.9)
for i in range(0, 7)
],
)
self.assertEqual(len(dataset._videos), 4)
total_labels = [
label_data
for video_labels in list(dataset._labels_per_video.values())
for label_data in video_labels
]
self.assertEqual(len(total_labels), 6)
self.assertEqual(len(dataset), 7) # Num clips
@parameterized.expand([(VideoDatasetType.Frame,), (VideoDatasetType.EncodedVideo,)])
def test__getitem__(self, dataset_type):
with tempfile.TemporaryDirectory(prefix=f"{TestDomsevVideoDataset}") as tempdir:
tempdir = Path(tempdir)
video_info_file = tempdir / "test_video_info.csv"
save_dataclass_objs_to_headered_csv(
list(MOCK_VIDEO_INFOS.values()), video_info_file
)
label_file = tempdir / "activity_video_info.csv"
labels = []
for label_list in self.LABELS_DATA.values():
for label_data in label_list:
labels.append(label_data)
save_dataclass_objs_to_headered_csv(labels, label_file)
video_data_manifest_file_path = (
tempdir / "video_data_manifest_file_path.json"
)
with ExitStack() as stack:
if dataset_type == VideoDatasetType.Frame:
video_data_dict = get_flat_video_frames(tempdir, "jpg")
elif dataset_type == VideoDatasetType.EncodedVideo:
video_data_dict = get_encoded_video_infos(tempdir, stack)
save_dataclass_objs_to_headered_csv(
list(video_data_dict.values()), video_data_manifest_file_path
)
video_ids = list(self.LABELS_DATA)
dataset = DomsevVideoDataset(
video_data_manifest_file_path=str(video_data_manifest_file_path),
video_info_file_path=str(video_info_file),
labels_file_path=str(label_file),
dataset_type=dataset_type,
clip_sampler=lambda x, y: [
VideoClipInfo(video_ids[i // 2], i * 2.0, i * 2.0 + 0.9)
for i in range(0, 7)
],
)
get_clip_string = (
"pytorchvideo.data.frame_video.FrameVideo.get_clip"
if dataset_type == VideoDatasetType.Frame
else "pytorchvideo.data.encoded_video.EncodedVideo.get_clip"
)
with unittest.mock.patch(
get_clip_string,
return_value=({"video": torch.rand(3, 5, 10, 20), "audio": []}),
) as _:
clip_1 = dataset.__getitem__(1)
for i, a in enumerate(clip_1["labels"]):
self.assertEqual(a, self.LABELS_DATA[video_ids[0]][i])
self.assertEqual(clip_1["start_time"], 2.0)
self.assertEqual(clip_1["stop_time"], 2.9)
self.assertEqual(clip_1["video_id"], MOCK_VIDEO_IDS[0])
clip_2 = dataset.__getitem__(2)
for i, a in enumerate(clip_2["labels"]):
self.assertEqual(a, self.LABELS_DATA[video_ids[1]][i])
self.assertEqual(clip_2["start_time"], 4.0)
self.assertEqual(clip_2["stop_time"], 4.9)
self.assertEqual(clip_2["video_id"], MOCK_VIDEO_IDS[1])
|