munkhdelger1's picture
End of training
feec14d verified
---
language:
- mn
base_model: bayartsogt/mongolian-roberta-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: roberta-base-ner-demo
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# roberta-base-ner-demo
This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1566
- Precision: 0.6857
- Recall: 0.7725
- F1: 0.7265
- Accuracy: 0.9453
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.9745 | 1.0 | 477 | 0.5080 | 0.2164 | 0.1205 | 0.1548 | 0.8187 |
| 0.425 | 2.0 | 954 | 0.3128 | 0.5213 | 0.5929 | 0.5548 | 0.9038 |
| 0.2943 | 3.0 | 1431 | 0.2337 | 0.5905 | 0.6781 | 0.6313 | 0.9237 |
| 0.2393 | 4.0 | 1908 | 0.2000 | 0.6303 | 0.7224 | 0.6732 | 0.9333 |
| 0.2134 | 5.0 | 2385 | 0.1813 | 0.6526 | 0.7434 | 0.6951 | 0.9384 |
| 0.1978 | 6.0 | 2862 | 0.1704 | 0.6629 | 0.7527 | 0.7050 | 0.9412 |
| 0.1885 | 7.0 | 3339 | 0.1647 | 0.6737 | 0.7625 | 0.7154 | 0.9429 |
| 0.1823 | 8.0 | 3816 | 0.1595 | 0.6816 | 0.7680 | 0.7222 | 0.9443 |
| 0.1792 | 9.0 | 4293 | 0.1576 | 0.6843 | 0.7713 | 0.7252 | 0.9451 |
| 0.1778 | 10.0 | 4770 | 0.1566 | 0.6857 | 0.7725 | 0.7265 | 0.9453 |
### Framework versions
- Transformers 4.40.1
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1