|
--- |
|
language: |
|
- mn |
|
base_model: bayartsogt/mongolian-roberta-base |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: roberta-base-ner-demo |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# roberta-base-ner-demo |
|
|
|
This model is a fine-tuned version of [bayartsogt/mongolian-roberta-base](https://huggingface.co/bayartsogt/mongolian-roberta-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1566 |
|
- Precision: 0.6857 |
|
- Recall: 0.7725 |
|
- F1: 0.7265 |
|
- Accuracy: 0.9453 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.9745 | 1.0 | 477 | 0.5080 | 0.2164 | 0.1205 | 0.1548 | 0.8187 | |
|
| 0.425 | 2.0 | 954 | 0.3128 | 0.5213 | 0.5929 | 0.5548 | 0.9038 | |
|
| 0.2943 | 3.0 | 1431 | 0.2337 | 0.5905 | 0.6781 | 0.6313 | 0.9237 | |
|
| 0.2393 | 4.0 | 1908 | 0.2000 | 0.6303 | 0.7224 | 0.6732 | 0.9333 | |
|
| 0.2134 | 5.0 | 2385 | 0.1813 | 0.6526 | 0.7434 | 0.6951 | 0.9384 | |
|
| 0.1978 | 6.0 | 2862 | 0.1704 | 0.6629 | 0.7527 | 0.7050 | 0.9412 | |
|
| 0.1885 | 7.0 | 3339 | 0.1647 | 0.6737 | 0.7625 | 0.7154 | 0.9429 | |
|
| 0.1823 | 8.0 | 3816 | 0.1595 | 0.6816 | 0.7680 | 0.7222 | 0.9443 | |
|
| 0.1792 | 9.0 | 4293 | 0.1576 | 0.6843 | 0.7713 | 0.7252 | 0.9451 | |
|
| 0.1778 | 10.0 | 4770 | 0.1566 | 0.6857 | 0.7725 | 0.7265 | 0.9453 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.40.1 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.19.0 |
|
- Tokenizers 0.19.1 |
|
|