muhtasham's picture
update model card README.md
7dc4d03
|
raw
history blame
2.14 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- accuracy
- f1
model-index:
- name: tiny-vanilla-target-tweet
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: tweet_eval
type: tweet_eval
config: emotion
split: train
args: emotion
metrics:
- name: Accuracy
type: accuracy
value: 0.7032085561497327
- name: F1
type: f1
value: 0.704229444708009
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-vanilla-target-tweet
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9887
- Accuracy: 0.7032
- F1: 0.7042
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.1604 | 4.9 | 500 | 0.9784 | 0.6604 | 0.6290 |
| 0.7656 | 9.8 | 1000 | 0.8273 | 0.7139 | 0.6905 |
| 0.534 | 14.71 | 1500 | 0.8138 | 0.7219 | 0.7143 |
| 0.3832 | 19.61 | 2000 | 0.8591 | 0.7086 | 0.7050 |
| 0.2722 | 24.51 | 2500 | 0.9250 | 0.7112 | 0.7118 |
| 0.1858 | 29.41 | 3000 | 0.9887 | 0.7032 | 0.7042 |
### Framework versions
- Transformers 4.25.1
- Pytorch 1.12.1
- Datasets 2.7.1
- Tokenizers 0.13.2