|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- tweet_eval |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: tiny-vanilla-target-tweet |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: tweet_eval |
|
type: tweet_eval |
|
config: emotion |
|
split: train |
|
args: emotion |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.7032085561497327 |
|
- name: F1 |
|
type: f1 |
|
value: 0.704229444708009 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# tiny-vanilla-target-tweet |
|
|
|
This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the tweet_eval dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.9887 |
|
- Accuracy: 0.7032 |
|
- F1: 0.7042 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: constant |
|
- num_epochs: 200 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 1.1604 | 4.9 | 500 | 0.9784 | 0.6604 | 0.6290 | |
|
| 0.7656 | 9.8 | 1000 | 0.8273 | 0.7139 | 0.6905 | |
|
| 0.534 | 14.71 | 1500 | 0.8138 | 0.7219 | 0.7143 | |
|
| 0.3832 | 19.61 | 2000 | 0.8591 | 0.7086 | 0.7050 | |
|
| 0.2722 | 24.51 | 2500 | 0.9250 | 0.7112 | 0.7118 | |
|
| 0.1858 | 29.41 | 3000 | 0.9887 | 0.7032 | 0.7042 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.25.1 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|