muhtasham's picture
update model card README.md
7dc4d03
|
raw
history blame
2.14 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - tweet_eval
metrics:
  - accuracy
  - f1
model-index:
  - name: tiny-vanilla-target-tweet
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: tweet_eval
          type: tweet_eval
          config: emotion
          split: train
          args: emotion
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.7032085561497327
          - name: F1
            type: f1
            value: 0.704229444708009

tiny-vanilla-target-tweet

This model is a fine-tuned version of google/bert_uncased_L-2_H-128_A-2 on the tweet_eval dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9887
  • Accuracy: 0.7032
  • F1: 0.7042

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.1604 4.9 500 0.9784 0.6604 0.6290
0.7656 9.8 1000 0.8273 0.7139 0.6905
0.534 14.71 1500 0.8138 0.7219 0.7143
0.3832 19.61 2000 0.8591 0.7086 0.7050
0.2722 24.51 2500 0.9250 0.7112 0.7118
0.1858 29.41 3000 0.9887 0.7032 0.7042

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.12.1
  • Datasets 2.7.1
  • Tokenizers 0.13.2