File size: 2,913 Bytes
29730b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: tiny-mlm-glue-qnli-target-glue-mnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-qnli-target-glue-mnli
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7907
- Accuracy: 0.6507
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 200
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 1.0753 | 0.04 | 500 | 1.0327 | 0.4677 |
| 1.0084 | 0.08 | 1000 | 0.9655 | 0.5434 |
| 0.962 | 0.12 | 1500 | 0.9232 | 0.5779 |
| 0.9358 | 0.16 | 2000 | 0.9087 | 0.5874 |
| 0.9241 | 0.2 | 2500 | 0.8928 | 0.5963 |
| 0.9157 | 0.24 | 3000 | 0.8772 | 0.5988 |
| 0.8992 | 0.29 | 3500 | 0.8687 | 0.6088 |
| 0.8928 | 0.33 | 4000 | 0.8571 | 0.6173 |
| 0.8757 | 0.37 | 4500 | 0.8529 | 0.6164 |
| 0.8774 | 0.41 | 5000 | 0.8438 | 0.6232 |
| 0.8694 | 0.45 | 5500 | 0.8372 | 0.6246 |
| 0.8653 | 0.49 | 6000 | 0.8350 | 0.6265 |
| 0.8677 | 0.53 | 6500 | 0.8268 | 0.6292 |
| 0.8584 | 0.57 | 7000 | 0.8270 | 0.6326 |
| 0.8508 | 0.61 | 7500 | 0.8134 | 0.6391 |
| 0.8521 | 0.65 | 8000 | 0.8110 | 0.6416 |
| 0.8447 | 0.69 | 8500 | 0.8264 | 0.6323 |
| 0.8466 | 0.73 | 9000 | 0.7951 | 0.6468 |
| 0.8379 | 0.77 | 9500 | 0.8089 | 0.6401 |
| 0.8277 | 0.81 | 10000 | 0.7941 | 0.6477 |
| 0.8307 | 0.86 | 10500 | 0.7999 | 0.6437 |
| 0.8289 | 0.9 | 11000 | 0.7874 | 0.6530 |
| 0.8228 | 0.94 | 11500 | 0.7835 | 0.6524 |
| 0.8228 | 0.98 | 12000 | 0.7851 | 0.6511 |
| 0.8078 | 1.02 | 12500 | 0.7907 | 0.6507 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|