File size: 2,185 Bytes
0451f58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: tiny-mlm-glue-qnli-from-scratch-custom-tokenizer-target-glue-qqp
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tiny-mlm-glue-qnli-from-scratch-custom-tokenizer-target-glue-qqp

This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli-from-scratch-custom-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5253
- Accuracy: 0.7422
- F1: 0.6175

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6417        | 0.04  | 500  | 0.6186          | 0.6422   | 0.3915 |
| 0.6074        | 0.09  | 1000 | 0.5913          | 0.6758   | 0.5148 |
| 0.5863        | 0.13  | 1500 | 0.5734          | 0.6951   | 0.5694 |
| 0.5727        | 0.18  | 2000 | 0.5628          | 0.7098   | 0.5369 |
| 0.5576        | 0.22  | 2500 | 0.5505          | 0.7215   | 0.5756 |
| 0.5502        | 0.26  | 3000 | 0.5428          | 0.7282   | 0.5839 |
| 0.545         | 0.31  | 3500 | 0.5368          | 0.7340   | 0.5996 |
| 0.5368        | 0.35  | 4000 | 0.5328          | 0.7342   | 0.6250 |
| 0.5385        | 0.4   | 4500 | 0.5300          | 0.7359   | 0.6323 |
| 0.5316        | 0.44  | 5000 | 0.5253          | 0.7422   | 0.6175 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2