File size: 2,185 Bytes
0451f58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: tiny-mlm-glue-qnli-from-scratch-custom-tokenizer-target-glue-qqp
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# tiny-mlm-glue-qnli-from-scratch-custom-tokenizer-target-glue-qqp
This model is a fine-tuned version of [muhtasham/tiny-mlm-glue-qnli-from-scratch-custom-tokenizer](https://huggingface.co/muhtasham/tiny-mlm-glue-qnli-from-scratch-custom-tokenizer) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5253
- Accuracy: 0.7422
- F1: 0.6175
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.6417 | 0.04 | 500 | 0.6186 | 0.6422 | 0.3915 |
| 0.6074 | 0.09 | 1000 | 0.5913 | 0.6758 | 0.5148 |
| 0.5863 | 0.13 | 1500 | 0.5734 | 0.6951 | 0.5694 |
| 0.5727 | 0.18 | 2000 | 0.5628 | 0.7098 | 0.5369 |
| 0.5576 | 0.22 | 2500 | 0.5505 | 0.7215 | 0.5756 |
| 0.5502 | 0.26 | 3000 | 0.5428 | 0.7282 | 0.5839 |
| 0.545 | 0.31 | 3500 | 0.5368 | 0.7340 | 0.5996 |
| 0.5368 | 0.35 | 4000 | 0.5328 | 0.7342 | 0.6250 |
| 0.5385 | 0.4 | 4500 | 0.5300 | 0.7359 | 0.6323 |
| 0.5316 | 0.44 | 5000 | 0.5253 | 0.7422 | 0.6175 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.8.1.dev0
- Tokenizers 0.13.2
|