File size: 1,997 Bytes
419960e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: olm-bert-tiny-december-2022-target-glue-qnli
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# olm-bert-tiny-december-2022-target-glue-qnli
This model is a fine-tuned version of [muhtasham/olm-bert-tiny-december-2022](https://huggingface.co/muhtasham/olm-bert-tiny-december-2022) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6358
- Accuracy: 0.6306
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.692 | 0.15 | 500 | 0.6882 | 0.5574 |
| 0.6777 | 0.31 | 1000 | 0.6637 | 0.6059 |
| 0.667 | 0.46 | 1500 | 0.6568 | 0.6064 |
| 0.6609 | 0.61 | 2000 | 0.6517 | 0.6193 |
| 0.6596 | 0.76 | 2500 | 0.6514 | 0.6127 |
| 0.6584 | 0.92 | 3000 | 0.6496 | 0.6202 |
| 0.6514 | 1.07 | 3500 | 0.6487 | 0.6191 |
| 0.652 | 1.22 | 4000 | 0.6420 | 0.6253 |
| 0.6449 | 1.37 | 4500 | 0.6415 | 0.6268 |
| 0.6477 | 1.53 | 5000 | 0.6358 | 0.6306 |
### Framework versions
- Transformers 4.27.0.dev0
- Pytorch 1.13.1+cu116
- Datasets 2.9.1.dev0
- Tokenizers 0.13.2
|