muhtasham's picture
update model card README.md
a8b055a
|
raw
history blame
2.24 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- wnut_17
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-small-finetuned-xglue-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: wnut_17
type: wnut_17
config: wnut_17
split: train
args: wnut_17
metrics:
- name: Precision
type: precision
value: 0.5931899641577061
- name: Recall
type: recall
value: 0.39593301435406697
- name: F1
type: f1
value: 0.4748923959827833
- name: Accuracy
type: accuracy
value: 0.9251634361738732
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-small-finetuned-xglue-ner
This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the wnut_17 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3663
- Precision: 0.5932
- Recall: 0.3959
- F1: 0.4749
- Accuracy: 0.9252
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 1.0 | 425 | 0.3590 | 0.6185 | 0.3433 | 0.4415 | 0.9220 |
| 0.2242 | 2.0 | 850 | 0.3638 | 0.6226 | 0.3947 | 0.4832 | 0.9245 |
| 0.1219 | 3.0 | 1275 | 0.3663 | 0.5932 | 0.3959 | 0.4749 | 0.9252 |
### Framework versions
- Transformers 4.21.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1