muhtasham commited on
Commit
a8b055a
·
1 Parent(s): 9240bc7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - wnut_17
7
+ metrics:
8
+ - precision
9
+ - recall
10
+ - f1
11
+ - accuracy
12
+ model-index:
13
+ - name: bert-small-finetuned-xglue-ner
14
+ results:
15
+ - task:
16
+ name: Token Classification
17
+ type: token-classification
18
+ dataset:
19
+ name: wnut_17
20
+ type: wnut_17
21
+ config: wnut_17
22
+ split: train
23
+ args: wnut_17
24
+ metrics:
25
+ - name: Precision
26
+ type: precision
27
+ value: 0.5931899641577061
28
+ - name: Recall
29
+ type: recall
30
+ value: 0.39593301435406697
31
+ - name: F1
32
+ type: f1
33
+ value: 0.4748923959827833
34
+ - name: Accuracy
35
+ type: accuracy
36
+ value: 0.9251634361738732
37
+ ---
38
+
39
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
40
+ should probably proofread and complete it, then remove this comment. -->
41
+
42
+ # bert-small-finetuned-xglue-ner
43
+
44
+ This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the wnut_17 dataset.
45
+ It achieves the following results on the evaluation set:
46
+ - Loss: 0.3663
47
+ - Precision: 0.5932
48
+ - Recall: 0.3959
49
+ - F1: 0.4749
50
+ - Accuracy: 0.9252
51
+
52
+ ## Model description
53
+
54
+ More information needed
55
+
56
+ ## Intended uses & limitations
57
+
58
+ More information needed
59
+
60
+ ## Training and evaluation data
61
+
62
+ More information needed
63
+
64
+ ## Training procedure
65
+
66
+ ### Training hyperparameters
67
+
68
+ The following hyperparameters were used during training:
69
+ - learning_rate: 2e-05
70
+ - train_batch_size: 8
71
+ - eval_batch_size: 8
72
+ - seed: 42
73
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
74
+ - lr_scheduler_type: linear
75
+ - num_epochs: 3
76
+
77
+ ### Training results
78
+
79
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
80
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
81
+ | No log | 1.0 | 425 | 0.3590 | 0.6185 | 0.3433 | 0.4415 | 0.9220 |
82
+ | 0.2242 | 2.0 | 850 | 0.3638 | 0.6226 | 0.3947 | 0.4832 | 0.9245 |
83
+ | 0.1219 | 3.0 | 1275 | 0.3663 | 0.5932 | 0.3959 | 0.4749 | 0.9252 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.21.1
89
+ - Pytorch 1.12.1+cu113
90
+ - Datasets 2.4.0
91
+ - Tokenizers 0.12.1