File size: 2,179 Bytes
2f2c411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: fine-tuned-DatasetQAS-Squad-ID-with-xlm-roberta-large-without-ITTL-without-freeze-LR-1e-05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine-tuned-DatasetQAS-Squad-ID-with-xlm-roberta-large-without-ITTL-without-freeze-LR-1e-05
This model is a fine-tuned version of [xlm-roberta-large](https://huggingface.co/xlm-roberta-large) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3876
- Exact Match: 53.6102
- F1: 69.6077
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|
| 1.5313 | 0.5 | 463 | 1.4235 | 48.7014 | 66.1658 |
| 1.3868 | 1.0 | 926 | 1.3193 | 51.7189 | 68.5896 |
| 1.2618 | 1.5 | 1389 | 1.2877 | 52.8032 | 69.3561 |
| 1.1847 | 2.0 | 1852 | 1.2893 | 53.0218 | 69.7724 |
| 1.0884 | 2.5 | 2315 | 1.2777 | 53.3328 | 69.8210 |
| 1.0927 | 3.0 | 2778 | 1.2596 | 53.4000 | 69.9664 |
| 0.9519 | 3.5 | 3241 | 1.3342 | 53.6102 | 69.6168 |
| 0.9591 | 4.0 | 3704 | 1.3078 | 54.0640 | 69.9492 |
| 0.8586 | 4.49 | 4167 | 1.3876 | 53.6102 | 69.6077 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2
|