muhammadravi251001's picture
update model card README.md
f63e1e8
|
raw
history blame
2.47 kB
metadata
license: mit
tags:
  - generated_from_trainer
metrics:
  - f1
model-index:
  - name: >-
      fine-tuned-DatasetQAS-IDK-MRC-with-xlm-roberta-large-with-ITTL-with-freeze-LR-1e-05
    results: []

fine-tuned-DatasetQAS-IDK-MRC-with-xlm-roberta-large-with-ITTL-with-freeze-LR-1e-05

This model is a fine-tuned version of xlm-roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8236
  • Exact Match: 75.9162
  • F1: 81.7215

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Exact Match F1
6.4323 0.49 36 2.3534 50.0 50.0
3.6036 0.98 72 1.7984 47.5131 48.0031
1.8711 1.48 108 1.1297 59.1623 67.4774
1.8711 1.97 144 1.0215 62.9581 70.7402
1.1663 2.46 180 0.8500 69.1099 76.2124
0.9042 2.95 216 0.8389 68.8482 76.0043
0.7502 3.45 252 0.8404 70.9424 78.2197
0.7502 3.94 288 0.9341 68.5864 75.3916
0.6715 4.44 324 0.7647 74.2147 80.2681
0.576 4.92 360 0.7881 75.6545 81.9120
0.576 5.42 396 0.8022 74.7382 80.7782
0.5213 5.91 432 0.8218 74.2147 80.6803
0.4811 6.41 468 0.8236 75.9162 81.7215

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.1+cu117
  • Datasets 2.2.0
  • Tokenizers 0.13.2