File size: 3,028 Bytes
6057056 32dec42 6057056 32dec42 6057056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: fine-tuned-DatasetQAS-IDK-MRC-with-indobert-base-uncased-with-ITTL-without-freeze-LR-1e-05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# fine-tuned-DatasetQAS-IDK-MRC-with-indobert-base-uncased-with-ITTL-without-freeze-LR-1e-05
This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0942
- Exact Match: 64.3979
- F1: 69.8535
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Exact Match | F1 |
|:-------------:|:-----:|:----:|:---------------:|:-----------:|:-------:|
| 6.1478 | 0.49 | 36 | 2.4099 | 49.8691 | 49.8691 |
| 3.581 | 0.98 | 72 | 1.9550 | 49.8691 | 49.8691 |
| 2.195 | 1.48 | 108 | 1.8446 | 49.3455 | 49.8564 |
| 2.195 | 1.97 | 144 | 1.7512 | 49.4764 | 51.2613 |
| 2.0071 | 2.46 | 180 | 1.6324 | 49.6073 | 52.3994 |
| 1.8105 | 2.95 | 216 | 1.5278 | 52.7487 | 55.8533 |
| 1.6668 | 3.45 | 252 | 1.3938 | 56.6754 | 60.5142 |
| 1.6668 | 3.94 | 288 | 1.3243 | 56.9372 | 62.8755 |
| 1.4715 | 4.44 | 324 | 1.2475 | 60.6021 | 66.5376 |
| 1.3112 | 4.93 | 360 | 1.2257 | 59.4241 | 65.0059 |
| 1.3112 | 5.42 | 396 | 1.1793 | 60.9948 | 66.2895 |
| 1.2443 | 5.91 | 432 | 1.1485 | 63.4817 | 69.0854 |
| 1.1586 | 6.41 | 468 | 1.1178 | 64.1361 | 69.5844 |
| 1.0895 | 6.9 | 504 | 1.1404 | 63.0890 | 68.6016 |
| 1.0895 | 7.4 | 540 | 1.0862 | 65.7068 | 70.8093 |
| 1.054 | 7.89 | 576 | 1.0959 | 64.7906 | 70.2001 |
| 1.0231 | 8.38 | 612 | 1.1036 | 64.3979 | 69.7053 |
| 1.0231 | 8.87 | 648 | 1.0698 | 65.8377 | 71.1488 |
| 0.9985 | 9.37 | 684 | 1.0777 | 66.0995 | 71.3149 |
| 0.9736 | 9.86 | 720 | 1.0942 | 64.3979 | 69.8535 |
### Framework versions
- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.2.0
- Tokenizers 0.13.2
|