File size: 13,785 Bytes
1e16ab6
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x79535150c430>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x79535150c4c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x79535150c550>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x79535150c5e0>", "_build": "<function ActorCriticPolicy._build at 0x79535150c670>", "forward": "<function ActorCriticPolicy.forward at 0x79535150c700>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x79535150c790>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x79535150c820>", "_predict": "<function ActorCriticPolicy._predict at 0x79535150c8b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x79535150c940>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x79535150c9d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x79535150ca60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7953516a5e00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1717009695401286657, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJp+kbz2FHa6rHQQOyJCCjS6M4M6/p0ougAAgD8AAIA/GtfoPY/2arqnAUM6DGW4NslKyDouCli5AACAPwAAgD8zisM89px1umvIkTuzGvE1dIBNucPIp7oAAIA/AACAP2bw+DycKFA+Ppu8vb9Lcr6oYXe9EP6kvAAAAAAAAAAAZnrKu+G0jbrMGJ+7TA4UOHHz0LrW4AG3AACAPwAAgD+AhkM9e1ahugIUUjoiyjo1frWjOUDrcbkAAIA/AACAPwC9u7yPBi66cAAIOt7RNzX2JbW5LgwbuQAAgD8AAIA/TRd5PRQkgLpqvnk3ZOLdMtPQTDsFBZC2AACAPwAAgD+NgdA9SLeuurINgbkeGfOzMkaMNypnlDgAAIA/AACAP/poKL74B6A/6DmOvlQio76Baza+s7wSvQAAAAAAAAAAzZWOPa6jgrprXXA7PlRPOO4OFbti+hS6AACAPwAAgD9mei88KVBgupVw47qVDe+19BXkOiqwBToAAIA/AACAP02vhz2FA/y5E0d0OZGPdDR45q46pR6PuAAAgD8AAIA/mpODPFxTB7od4iC6k00jtam8XTsOyEA5AACAPwAAgD94wKy+Hr2BPwvWFL5RtKa+x+qfvi3aJD4AAAAAAAAAALM7g724Vte5Itvoutx0lrVloFg52QgHOgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIeXK8tf5WMAWyUTegDjAF0lEdAl1lyiEg4fnV9lChoBkdAX+h36hxo7GgHTegDaAhHQJdfKAOJ+Dx1fZQoaAZHQGMaMgMc6vJoB03oA2gIR0CXYniudPLxdX2UKGgGR0Bh1IRdyDIzaAdN6ANoCEdAl2fVL8Jla3V9lChoBkdAY9GH/tICl2gHTegDaAhHQJdqbpJPIn11fZQoaAZHQGLm8eS0Sh9oB03oA2gIR0CXauKE384xdX2UKGgGR0Bds1dLQHAzaAdN6ANoCEdAl2tFnM+u/3V9lChoBkdAY6xX7tRekmgHTegDaAhHQJdxpyT6i0x1fZQoaAZHQGLPXe3x4INoB03oA2gIR0CXdAzEaVD8dX2UKGgGR0Bij8i4axX5aAdN6ANoCEdAl3d0MspXqHV9lChoBkdAYHx8YyfthWgHTegDaAhHQJd59a3Zwn91fZQoaAZHQGRWwfyPMjhoB03oA2gIR0CXiLT4cm0FdX2UKGgGR0Bhz2HJtBOYaAdN6ANoCEdAl4tZq7Ack3V9lChoBkdAYw245tFa0WgHTegDaAhHQJegBU+9rXV1fZQoaAZHQGENcPnSv1VoB03oA2gIR0CXoUI9TxXodX2UKGgGR0Bhx9HDrJKbaAdN6ANoCEdAl6ZeIEbHZXV9lChoBkdAYkv/mT1TSGgHTegDaAhHQJencOkLx7R1fZQoaAZHQGVqK4x1xKhoB03oA2gIR0CXrVuKXOW0dX2UKGgGR0BmS/8CPp6haAdN6ANoCEdAl7GERODaoXV9lChoBkdAZShnctXgcmgHTegDaAhHQJe5RB4Uvf11fZQoaAZHQF9JaC+UQkJoB03oA2gIR0CXvF4sEq2CdX2UKGgGR0BZTZMlC1JEaAdN6ANoCEdAl7zeV5a/y3V9lChoBkdAYkZufEn9emgHTegDaAhHQJe9QSpR4yJ1fZQoaAZHQF/RhK15Sm9oB03oA2gIR0CXw71pj+aSdX2UKGgGR0BgOZqTKT0QaAdN6ANoCEdAl8Y3sTnJT3V9lChoBkdAYl0OJ+DvmmgHTegDaAhHQJfJr0Eovzx1fZQoaAZHQGEiadMCcPRoB03oA2gIR0CXzCNCZ4OddX2UKGgGR0BksftY0VJuaAdN6ANoCEdAl9eQBxPweHV9lChoBkdAZhVQ2MsH0WgHTegDaAhHQJfaUaBI4ER1fZQoaAZHQGXrwuEmICVoB03oA2gIR0CX8c3I+4b0dX2UKGgGR0Bh2Ia99MK1aAdN6ANoCEdAl/Mavmoze3V9lChoBkdAcJrFz+3pfWgHTf8BaAhHQJf2Ho5ggHN1fZQoaAZHQGN25s9B8hNoB03oA2gIR0CX+DzcynDSdX2UKGgGR0BgDIE6kqMFaAdN6ANoCEdAl/k4SteUp3V9lChoBkdARZHcJtzjm2gHS8poCEdAl/oYDklu33V9lChoBkdAYiYZP2wmmmgHTegDaAhHQJf+KRYA80V1fZQoaAZHQGHMKhcqvvBoB03oA2gIR0CYAPGMn7YTdX2UKGgGR0Bet4nndO6/aAdN6ANoCEdAmAUyPQv6CXV9lChoBkdAYfRE3sHB12gHTegDaAhHQJgHYQCjk+51fZQoaAZHQGazFDWsijdoB03oA2gIR0CYB8jzI3irdX2UKGgGR0BjShgZ0jkdaAdN6ANoCEdAmAgYrrgO0HV9lChoBkdAZhHhYNiH7GgHTegDaAhHQJgP+Vkc0ch1fZQoaAZHQGHQJbdJrcloB03oA2gIR0CYE17iQ1aXdX2UKGgGR0BjfazcAR02aAdN6ANoCEdAmBZ5iuuA7XV9lChoBkdAY+8fIS13MmgHTegDaAhHQJgke88La251fZQoaAZHQGAEeNtIkJNoB03oA2gIR0CYPA6q814xdX2UKGgGR0Bln+VopQUIaAdN6ANoCEdAmD1Iw7DEWXV9lChoBkdAY6mSV4X402gHTegDaAhHQJhADehwl0J1fZQoaAZHQGMVv7WNFSdoB03oA2gIR0CYQgXwsoUjdX2UKGgGR0BnRWPT5O8DaAdN6ANoCEdAmELy6UaAF3V9lChoBkdAYbeHvc8DCGgHTegDaAhHQJhDzR5TqB51fZQoaAZHQGMpedkJ8fFoB03oA2gIR0CYR9wTdtVJdX2UKGgGR0BMfrBCUornaAdLy2gIR0CYSnf16E8JdX2UKGgGR0BoAj9hqj8DaAdN6ANoCEdAmEt8YEW69XV9lChoBkdAaE89lEqlQGgHTegDaAhHQJhRpF/hESd1fZQoaAZHQGLwDHfdhy9oB03oA2gIR0CYVNnndO6/dX2UKGgGR0BgZStJWeYlaAdN6ANoCEdAmFVS0Sh8IHV9lChoBkdAZKftQ9A5aWgHTegDaAhHQJhVsPCl7+l1fZQoaAZHQGikq02LpA5oB03oA2gIR0CYXoHzYmLMdX2UKGgGR0BQXSRwIdELaAdL1GgIR0CYYXwd8zAOdX2UKGgGR0Bd9qH9FWn1aAdN6ANoCEdAmGJN0Rvm5nV9lChoBkdAZAn93r2QGWgHTegDaAhHQJhk4WN3np11fZQoaAZHQFGakeIVM25oB0vWaAhHQJhuHPJJXhh1fZQoaAZHQGUdRpUPxx1oB03oA2gIR0CYcEu76Hj7dX2UKGgGR0BdinNxEORUaAdN6ANoCEdAmHaCAH3UQXV9lChoBkdAY97vYvnKXGgHTegDaAhHQJiL8OEug6F1fZQoaAZHQGUmvczqKP5oB03oA2gIR0CYkQTCcf/4dX2UKGgGR0BiXbwBo24vaAdN6ANoCEdAmJIlaGHpKXV9lChoBkdAY2ks/6frbGgHTegDaAhHQJiTHEVFhG91fZQoaAZHQGaTcGLUCq9oB03oA2gIR0CYl9iMYMvzdX2UKGgGR0BlaEVpKzzFaAdN6ANoCEdAmJpsXm/34HV9lChoBkdAYsEmhM8HOmgHTegDaAhHQJibTjDKoyd1fZQoaAZHQGTcA+pwS8JoB03oA2gIR0CYoKJaaCtjdX2UKGgGR0BmlbV+Zw4saAdN6ANoCEdAmKNXXd0q6XV9lChoBkdAZrN4i5d4V2gHTegDaAhHQJij0Z3s5XF1fZQoaAZHQGceQF9roGJoB03oA2gIR0CYrpLPD50sdX2UKGgGR0BjJogq3EydaAdN6ANoCEdAmLOkKeCkGnV9lChoBkdAXsKObRWtEGgHTegDaAhHQJi3aI7/4qR1fZQoaAZHQGHnl1bJOnFoB03oA2gIR0CYwisIVuaXdX2UKGgGR0BfgOCK77KraAdN6ANoCEdAmMQorSVnmXV9lChoBkdAYuo1RceKbmgHTegDaAhHQJjKSFRHf/F1fZQoaAZHQGUF44ZMtbtoB03oA2gIR0CYy4irDIikdX2UKGgGR0BkmjibUgB+aAdN6ANoCEdAmOEhF3IMjXV9lChoBkdAYAy9yLhrFmgHTegDaAhHQJjiHXcxj8V1fZQoaAZHQGavp84PwuxoB03oA2gIR0CY4yt2LYPHdX2UKGgGR0BhJzPQfIS2aAdN6ANoCEdAmOm1IAfdRHV9lChoBkdAYaDNCZ4Oc2gHTegDaAhHQJjtN+XqqwR1fZQoaAZHQGUazVUdaMdoB03oA2gIR0CY7kAp8WsSdX2UKGgGR0BlyUBKcurZaAdN6ANoCEdAmPNRaLXL/3V9lChoBkdAYBGmWMS9NGgHTegDaAhHQJj1xy925hB1fZQoaAZHQGRGld1MdtFoB03oA2gIR0CY9jsQumJndX2UKGgGR0BSygswtapxaAdL02gIR0CY9oQ+EAYIdX2UKGgGR0BGcgEdNnGsaAdNAgFoCEdAmPvaUVzp5nV9lChoBkdAcEOYkmhM8GgHTaYCaAhHQJj9cGOdXkp1fZQoaAZHQGPEvd/J/5NoB03oA2gIR0CY/qyfthNNdX2UKGgGR0Bnnu2sq8UVaAdN6ANoCEdAmQG3kPtlZ3V9lChoBkdAZnnfek56t2gHTegDaAhHQJkD3hGYrrh1fZQoaAZHQGAthpYcNpdoB03oA2gIR0CZC5I42jwhdX2UKGgGR0BlyGlTFVDKaAdN6ANoCEdAmRMGBnSOR3V9lChoBkdAY9bZxrBTGmgHTegDaAhHQJkUJoi9qUN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sun Apr 28 14:29:16 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}