File size: 3,241 Bytes
d1432cd 76767f4 439304d d1432cd 100ff47 9e6d1e5 a8a6fd4 ef6c9a5 1553851 0c28a58 3b92a10 0c28a58 568f160 6ff179d 568f160 9e6d1e5 c043512 9e6d1e5 45ab82d 9e6d1e5 bf36083 9e6d1e5 1f5956b 05ce8a6 1f5956b 9e6d1e5 76767f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
---
license: mit
datasets:
- mshenoda/spam-messages
pipeline_tag: text-classification
widget:
- text: >-
U have a secret admirer. REVEAL who thinks U R So special. Call 09065174042.
To opt out Reply REVEAL STOP. 1.50 per msg recd.
example_title: spam example 1
- text: >-
Hey so this sat are we going for the intro pilates only? Or the kickboxing
too?
example_title: ham example 1
- text: >-
Great News! Call FREEFONE 08006344447 to claim your guaranteed $1000 CASH or
$2000 gift. Speak to a live operator NOW!
example_title: spam example 2
- text: Dude im no longer a pisces. Im an aquarius now.
example_title: ham example 2
language:
- en
---
# RoBERTa based Spam Message Detection
Spam messages frequently carry malicious links or phishing attempts posing significant threats to both organizations and their users. By choosing our RoBERTa-based spam message detection system, organizations can greatly enhance their security infrastructure. Our system effectively detects and filters out spam messages, adding an extra layer of security that safeguards organizations against potential financial losses, legal consequences, and reputational harm.
## Found this model useful:
Your feedback is important and would help keep this relevent.
## Metrics
Loss | Accuracy(0.9906) | Precision(0.9971) / Recall(0.9934) | Confusion Matrix
:-------------------------:|:-------------------------:|:-------------------------:|:-------------------------:
![](plots/train_validation_loss.jpg "Train / Validation Loss") Train / Validation | ![](plots/validation_accuracy.jpg "Validation Accuracy") Validation | ![](plots/validation_precision_recall.jpg "Validation Precision / Recall") Validation | ![](plots/confusion_matrix.png "confusion_matrix") Testing Set
## Model Output
- 0 is ham
- 1 is spam
## Dataset
https://huggingface.co/datasets/mshenoda/spam-messages
The dataset is composed of messages labeled by ham or spam, merged from three data sources:
1. SMS Spam Collection https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset
2. Telegram Spam Ham https://huggingface.co/datasets/thehamkercat/telegram-spam-ham/tree/main
3. Enron Spam: https://huggingface.co/datasets/SetFit/enron_spam/tree/main (only used message column and labels)
The prepare script for enron is available at https://github.com/mshenoda/roberta-spam/tree/main/data/enron.
The data is split 80% train 10% validation, and 10% test sets; the scripts used to split and merge of the three data sources are available at: https://github.com/mshenoda/roberta-spam/tree/main/data/utils.
### Dataset Class Distribution
Training 80% | Validation 10% | Testing 10%
:-------------------------:|:-------------------------:|:-------------------------:
![](plots/train_set_distribution.jpg "Train / Validation Loss") Class Distribution | ![](plots/val_set_distribution.jpg "Class Distribution") Class Distribution | ![](plots/test_set_distribution.jpg "Class Distribution") Class Distribution
## Architecture
The model is fine tuned RoBERTa
roberta-base: https://huggingface.co/roberta-base
paper: https://arxiv.org/abs/1907.11692
## Code
https://github.com/mshenoda/roberta-spam |