File size: 1,437 Bytes
d1432cd
 
 
100ff47
9e6d1e5
 
 
 
45ab82d
 
 
 
9e6d1e5
 
 
 
 
 
1f5956b
 
 
 
9e6d1e5
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
---
license: mit
---
# RoBERTa based Spam Message Detection
Spam messages frequently carry malicious links or phishing attempts posing significant threats to both organizations and their users. By choosing our RoBERTa-based spam message detection system, organizations can greatly enhance their security infrastructure. Our system effectively detects and filters out spam messages, adding an extra layer of security that safeguards organizations against potential financial losses, legal consequences, and reputational harm.

## Dataset
The dataset is composed of messages labeled by ham or spam, merged from three data sources:

1. SMS Spam Collection https://www.kaggle.com/datasets/uciml/sms-spam-collection-dataset
2. Telegram Spam Ham https://huggingface.co/datasets/thehamkercat/telegram-spam-ham/tree/main
3. Enron Spam:  https://huggingface.co/datasets/SetFit/enron_spam/tree/main (only used message column and labels)

The prepare script for enron is available at https://github.com/mshenoda/roberta-spam/tree/main/data/enron.
The data is split 80% train 10% validation, and 10% test sets; the scripts used to split and merge of the three data sources are available at: https://github.com/mshenoda/roberta-spam/tree/main/data/utils.


## Architecture
The model is fine tuned RoBERTa 

roberta-base: https://huggingface.co/roberta-base
paper: https://arxiv.org/abs/1907.11692 

## Code

https://github.com/mshenoda/roberta-spam