File size: 4,287 Bytes
d1fec95
 
 
 
 
 
1819478
 
 
 
 
c697cfe
 
 
 
 
de7c45f
c697cfe
de7c45f
c697cfe
8c04ef6
 
 
 
 
c697cfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819478
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
---
license: apache-2.0
language:
- en
library_name: open_clip
pipeline_tag: zero-shot-image-classification
tags:
- clip
- genshin-impact
- game
- siglip
---

# GenshinCLIP
A simple open-sourced SigLIP model fine-tuned on Genshin Impact's image-text pairs.

Visit the [github](https://github.com/mrzjy/GenshinCLIP) for case study and data pair examples.

The model is far from being perfect, but could still offer some better text-image matching performance in some Genshin Impact scenarios.

| Model                                                                                     | Checkpoint Size | Val Loss |
|:-------------------------------------------------------------------------------------------:|:-----------------:|:----------:|
| [GenshinImpact-CLIP-ViT-B-16-laion2B-s34B-b88K](https://huggingface.co/mrzjy/GenshinImpact-CLIP-ViT-B-16-laion2B-s34B-b88K) | 0.59 GB         | 1.152    |
| [GenshinImpact-ViT-SO400M-14-SigLIP-384](https://huggingface.co/mrzjy/GenshinImpact-ViT-SO400M-14-SigLIP-384)        | 3.51 GB         | 0.362    |

## Intended uses & limitations

You can use the raw model for tasks like zero-shot image classification and image-text retrieval.

### How to use (With OpenCLIP)

Here is how to use this model to perform zero-shot image classification:

```python
import torch
import torch.nn.functional as F
from PIL import Image
import requests
from open_clip import create_model_from_pretrained, get_tokenizer

def preprocess_text(string):
    return "Genshin Impact\n" + string

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# load checkpoint from local path
# model_path = "path/to/open_clip_pytorch_model.bin"
# model_name = "ViT-SO400M-14-SigLIP-384"
# model, preprocess = create_model_from_pretrained(model_name=model_name, pretrained=model_path, device=device)
# tokenizer = get_tokenizer(model_name)

# or load from hub
model, preprocess = create_model_from_pretrained('hf-hub:mrzjy/GenshinImpact-ViT-SO400M-14-SigLIP-384')
tokenizer = get_tokenizer('hf-hub:mrzjy/GenshinImpact-ViT-SO400M-14-SigLIP-384')

# image
image_url = "https://static.wikia.nocookie.net/gensin-impact/images/3/33/Qingce_Village.png"
image = Image.open(requests.get(image_url, stream=True).raw)
image = preprocess(image).unsqueeze(0).to(device)

# text choices
labels = [
    "This is an area of Liyue",
    "This is an area of Mondstadt",
    "This is an area of Sumeru",
    "This is Qingce Village"
]
labels = [preprocess_text(l) for l in labels]
text = tokenizer(labels, context_length=model.context_length).to(device)
with torch.autocast(device_type=device.type):
    with torch.no_grad():
        image_features = model.encode_image(image)
        text_features = model.encode_text(text)
        image_features = F.normalize(image_features, dim=-1)
        image_features = F.normalize(image_features, dim=-1)
        text_features = F.normalize(text_features, dim=-1)
        text_probs = torch.sigmoid(image_features @ text_features.T * model.logit_scale.exp() + model.logit_bias)
        scores = [f"{s:.3f}" for i, s in enumerate(text_probs.tolist()[0])]
        print(scores)  # [0.016, 0.000, 0.001, 0.233]
```

## Model Card
### SigLIP for GenshinImpact

[SigLIP model](https://huggingface.co/timm/ViT-SO400M-14-SigLIP-384) further fine-tuned on 17k Genshin Impact English text-image pairs at resolution 384x384.

### Training data description

There're currently 17,428 (train) and 918 (validation) text-image pairs used for model training.

All the images and texts are crawled from [Genshin Fandom Wiki](https://genshin-impact.fandom.com/wiki) and are manually parsed to form text-image pairs.

**Image Processing:**
- Size: Resize all images to 384x384 pixels to match the original model training settings.
- Format: Accept images in PNG or GIF format. For GIFs, extract a random frame to create a static image for text-image pairs.

**Text Processing:**
- Source: Text can be from the simple caption attribute of an HTML `<img>` tag or specified web content.
- Format: Prepend all texts with "Genshin Impact" along with some simple template to form natural language sentences.

**Data Distribution:**

![data_distribution.png](img%2Fdata_distribution.png)

**Validation Loss Curve**

![loss_curve.png](img%2Floss_curve.png)