metadata
tags:
- generated_from_trainer
- code
- coding
- phi-2
- phi2
model-index:
- name: phi-2-coder
results: []
license: apache-2.0
language:
- code
thumbnail: >-
https://huggingface.co/mrm8488/llama-2-coder-7b/resolve/main/llama2-coder-logo-removebg-preview.png
datasets:
- HuggingFaceH4/CodeAlpaca_20K
pipeline_tag: text-generation
Phi-2 Coder π©βπ»
Phi-2 fine-tuned on the CodeAlpaca 20k instructions dataset by using the method QLoRA with PEFT library.
Model description π§
Phi-2 is a Transformer with 2.7 billion parameters. It was trained using the same data sources as Phi-1.5, augmented with a new data source that consists of various NLP synthetic texts and filtered websites (for safety and educational value). When assessed against benchmarks testing common sense, language understanding, and logical reasoning, Phi-2 showcased a nearly state-of-the-art performance among models with less than 13 billion parameters.
Training and evaluation data π
CodeAlpaca_20K: contains 20K instruction-following data used for fine-tuning the Code Alpaca model.
LoRa config
config = LoraConfig(
r=32,
lora_alpha=64,
target_modules=[
"Wqkv",
"fc1",
"fc2",
"out_proj"
],
bias="none",
lora_dropout=0.05,
task_type="CAUSAL_LM",
)
Training hyperparameters β
per_device_train_batch_size=4,
gradient_accumulation_steps=32,
num_train_epochs=2,
learning_rate=2.5e-5,
optim="paged_adamw_8bit",
seed=66,
load_best_model_at_end=True,
save_strategy="steps",
save_steps=50,
evaluation_strategy="steps",
eval_steps=50,
Training results ποΈ
Step | Training Loss | Validation Loss |
---|---|---|
50 | 0.624400 | 0.600070 |
100 | 0.634100 | 0.592757 |
150 | 0.545800 | 0.586652 |
200 | 0.572500 | 0.577525 |
250 | 0.528000 | 0.590118 |
HumanEval results π
WIP
Example of usage π©βπ»
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "mrm8488/phi-2-coder"
tokenizer = AutoTokenizer.from_pretrained(model_id, add_bos_token=True, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True, torch_dtype=torch.float16, device="auto")
def generate(
instruction,
max_new_tokens=128,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=2,
**kwargs,
):
prompt = "Instruct: " + instruction + "\nOutput:"
print(prompt)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to("cuda")
attention_mask = inputs["attention_mask"].to("cuda")
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
max_new_tokens=max_new_tokens,
eos_token_id = tokenizer.eos_token_id,
use_cache=True,
early_stopping=True
)
output = tokenizer.decode(generation_output[0])
return output.split("\nOutput:")[1].lstrip("\n")
instruction = "Design a class for representing a person in Python."
print(generate(instruction))