|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- HuggingFaceH4/no_robots |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
thumbnail: https://huggingface.co/mrm8488/mistral-7b-ft-h4-no_robots_instructions/resolve/main/mistralh4-removebg-preview.png?download=true |
|
--- |
|
|
|
<div style="text-align:center;width:250px;height:250px;"> |
|
<img src="https://huggingface.co/mrm8488/mistral-7b-ft-h4-no_robots_instructions/resolve/main/mistralh4-removebg-preview.png?download=true" alt="limstral logo""> |
|
</div> |
|
<br /> |
|
|
|
## Mistral 7B fine-tuned on H4/No Robots instructions |
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [HuggingFaceH4/no_robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) dataset for instruction following downstream task. |
|
|
|
## Training procedure |
|
|
|
The model was loaded on **8 bits** and fine-tuned on the LIMA dataset using the **LoRA** PEFT technique with the `huggingface/peft` library and `trl/sft` for one epoch on 1 x A100 (40GB) GPU. |
|
|
|
SFT Trainer params: |
|
``` |
|
trainer = SFTTrainer( |
|
model=model, |
|
train_dataset=train_ds, |
|
eval_dataset=test_ds, |
|
peft_config=peft_config, |
|
dataset_text_field="text", |
|
max_seq_length=2048, |
|
tokenizer=tokenizer, |
|
args=training_arguments, |
|
packing=False |
|
) |
|
``` |
|
|
|
LoRA config: |
|
``` |
|
config = LoraConfig( |
|
lora_alpha=16, |
|
lora_dropout=0.1, |
|
r=64, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
target_modules = ['q_proj', 'k_proj', 'down_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj'] |
|
) |
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 66 |
|
- gradient_accumulation_steps: 64 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.03 |
|
- num_epochs: 2 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Step | Training Loss | Validation Loss | |
|
|------|---------------|-----------------| |
|
| 10 | 1.796200 | 1.774305 | |
|
| 20 | 1.769700 | 1.679720 | |
|
| 30 | 1.626800 | 1.667754 | |
|
| 40 | 1.663400 | 1.665188 | |
|
| 50 | 1.565700 | 1.659000 | |
|
| 60 | 1.660300 | 1.658270 | |
|
|
|
|
|
|
|
|
|
### Usage |
|
```py |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline |
|
|
|
repo_id = "mrm8488/mistral-7b-ft-h4-no_robots_instructions" |
|
|
|
model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype=torch.bfloat16) |
|
tokenizer = AutoTokenizer.from_pretrained(repo_id) |
|
|
|
gen = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0) |
|
|
|
instruction = "[INST] Write an email to say goodbye to me boss [\INST]" |
|
res = gen(instruction, max_new_tokens=512, temperature=0.3, top_p=0.75, top_k=40, repetition_penalty=1.2, eos_token_id=2) |
|
print(res[0]['generated_text']) |
|
``` |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0.dev0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.14.6 |
|
- Tokenizers 0.14.1 |