llama-2-coder-7b / README.md
mrm8488's picture
Update README.md
7d8dffc
|
raw
history blame
4.48 kB
metadata
tags:
  - generated_from_trainer
  - code
  - coding
  - llama
model-index:
  - name: Llama-2-coder-7b
    results: []
license: apache-2.0
language:
  - code
thumbnail: >-
  https://huggingface.co/mrm8488/llama-2-coder-7b/resolve/main/llama2-coder-logo-removebg-preview.png
datasets:
  - HuggingFaceH4/CodeAlpaca_20K
pipeline_tag: text-generation
llama-2 coder logo

LlaMa 2 Coder πŸ¦™πŸ‘©β€πŸ’»

LlaMa-2 7b fine-tuned on the CodeAlpaca 20k instructions dataset by using the method QLoRA with PEFT library.

Model description 🧠

Llama-2

Llama 2 is a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Meta developed and publicly released the Llama 2 family of large language models (LLMs), a collection of pretrained and fine-tuned generative text models ranging in scale from 7 billion to 70 billion parameters. Our fine-tuned LLMs, called Llama-2-Chat, are optimized for dialogue use cases. Llama-2-Chat models outperform open-source chat models on most benchmarks we tested, and in our human evaluations for helpfulness and safety, are on par with some popular closed-source models like ChatGPT and PaLM.

Training and evaluation data πŸ“š

CodeAlpaca_20K: contains 20K instruction-following data used for fine-tuning the Code Alpaca model.

Training hyperparameters βš™

    optim="paged_adamw_32bit",
    num_train_epochs = 2,
    eval_steps=50,
    save_steps=50,
    evaluation_strategy="steps",
    save_strategy="steps",
    save_total_limit=2,
    seed=66,
    load_best_model_at_end=True,
    logging_steps=1,
    learning_rate=2e-4,
    fp16=True,
    bf16=False,
    max_grad_norm=0.3,
    warmup_ratio=0.03,
    group_by_length=True,
    lr_scheduler_type="constant"

Training results πŸ—’οΈ

Step Training Loss Validation Loss
50 0.624400 0.600070
100 0.634100 0.592757
150 0.545800 0.586652
200 0.572500 0.577525
250 0.528000 0.590118

Eval results πŸ“Š

WIP

Example of usage πŸ‘©β€πŸ’»

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig

model_id = "mrm8488/llama-2-coder-7b"

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id).to("cuda")

def create_prompt(instruction):
  system = "You are a coding assistant that will help the user to resolve the following instruction:"
  instruction = "### Instruction: " + instruction
  return system + "\n" + instruction + "\n\n" + "### Solution:" + "\n"

def generate(
        instruction,
        max_new_tokens=128,
        temperature=0.1,
        top_p=0.75,
        top_k=40,
        num_beams=4,
        **kwargs,
):
    prompt = create_prompt(instruction)
    print(prompt)
    inputs = tokenizer(prompt, return_tensors="pt")
    input_ids = inputs["input_ids"].to("cuda")
    attention_mask = inputs["attention_mask"].to("cuda")
    generation_config = GenerationConfig(
        temperature=temperature,
        top_p=top_p,
        top_k=top_k,
        num_beams=num_beams,
        **kwargs,
    )
    with torch.no_grad():
        generation_output = model.generate(
            input_ids=input_ids,
            attention_mask=attention_mask,
            generation_config=generation_config,
            return_dict_in_generate=True,
            output_scores=True,
            max_new_tokens=max_new_tokens,
            early_stopping=True
        )
    s = generation_output.sequences[0]
    output = tokenizer.decode(s)
    return output.split("### Solution:")[1].lstrip("\n")

instruction = """
Edit the following XML code to add a navigation bar to the top of a web page
<html>
<head>
  <title>CliBrAIn</title>
</head>
"""
print(generate(instruction))

Citation

@misc {manuel_romero_2023,
    author       = { {Manuel Romero} },
    title        = { llama-2-coder-7b (Revision d30d193) },
    year         = 2023,
    url          = { https://huggingface.co/mrm8488/llama-2-coder-7b },
    doi          = { 10.57967/hf/0931 },
    publisher    = { Hugging Face }
}