limstral-7B-v0.1 / README.md
mrm8488's picture
Update README.md
c3adcbb
|
raw
history blame
2.15 kB
---
license: apache-2.0
datasets:
- GAIR/lima
language:
- en
pipeline_tag: text-generation
---
# LIMSTAL
## Mistral 7B fine-tuned on LIMA
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the LIMA dataset.
## Training procedure
The model was loaded on **8 bits** and fine-tuned on the LIMA dataset using the **LoRA** PEFT technique with the `huggingface/peft` library for 2 epochs on 1 x A100 (40GB) GPU.
LoRA config:
```
config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
target_modules = ['q_proj', 'k_proj', 'down_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj']
)
```
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 66
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7917 | 0.72 | 5 | 1.7604 |
| 1.7743 | 1.44 | 10 | 1.7217 |
### Usage
```py
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
model_id = "mrm8488/limstral-7B-v0.1"
tokenizer = "mrm8488/limstral-7B-v0.1"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model.resize_token_embeddings(len(tokenizer))
gen = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
instruction = "[INST] Write a email to day goodbye to me boss [\INST]"
res = gen(instruction, max_new_tokens=512, temperature=0.3, top_p=0.75, top_k=40, repetition_penalty=1.2)
print(res[0]['generated_text'])
```
### Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1