metadata
language:
- en
license: mit
tags:
- generated_from_trainer
- deberta-v3
datasets:
- glue
metrics:
- accuracy
base_model: microsoft/deberta-v3-small
model-index:
- name: deberta-v3-small
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE SST2
type: glue
args: sst2
metrics:
- type: accuracy
value: 0.9403669724770642
name: Accuracy
- task:
type: text-classification
name: Text Classification
dataset:
name: glue
type: glue
config: sst2
split: validation
metrics:
- type: accuracy
value: 0.9403669724770642
name: Accuracy
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2MyOTE4ZTk0YzUyNGFkMGVjNTk4MDBlZGRlZjgzOGIzYWY0YjExMmZmMDZkYjFmOTlkYmM2ZDEwYjMxM2JkOCIsInZlcnNpb24iOjF9.Ks2vdjAFUe0isZp4F-OFK9HzvPqeU3mJEG_XJfOvkTdm9DyaefT9x78sof8i_EbIync5Ao7NOC4STCTQIUvgBw
- type: precision
value: 0.9375
name: Precision
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYzNiZTEwNGNlZWUwZjMxYmRjNWU0ZGQ1Njg1M2MwNTQ3YWEwN2JlNDk4OWQ4MzNkMmNhOGUwMzA0YWU3ZWZjMiIsInZlcnNpb24iOjF9.p5Gbs680U45zHoWH9YgRLmOxINR4emvc2yNe9Kt3-y_WyyCd6CAAK9ht-IyGJ7GSO5WQny-ISngJFtyFt5NqDQ
- type: recall
value: 0.9459459459459459
name: Recall
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjk2MmJjMDZlZDUzM2QzMWZhMzMxNWRkYjJlYzA3MjUwMThiYWMwNmQzODE1MTMxNTdkNWVmMDhhNzJjMjg3MyIsInZlcnNpb24iOjF9.Jeu6tyhXQxMykqqFH0V-IXvyTrxAsgnYByYCOJgfj86957G5LiGdfQzDtTuGkt0XcoenXhPuueT8m5tsuJyLBA
- type: auc
value: 0.9804217184474193
name: AUC
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2Q5MWU1MGMzMjEwNzY4MDkzN2Q5ZjM5MTQ2MDc5YTRkZTNmNTk2YTdhODI1ZGJlOTlkNTQ2M2Q4YTUxN2Y3OSIsInZlcnNpb24iOjF9.INkDvQhg2jfD7WEE4qHJazPYo10O4Ffc5AZz5vI8fmN01rK3sXzzydvmrmTMzYSSmLhn9sc1-ZkoWbcv81oqBA
- type: f1
value: 0.9417040358744394
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYWRhNjljZjk0NjY1ZjU1ZjU2ZmM5ODk1YTVkMTI0ZGY4MjI1OTFlZWJkZWMyMGYxY2I1MzRjODBkNGVlMzJkZSIsInZlcnNpb24iOjF9.kQ547NVFUxeE4vNiGzGsCvMxR1MCJTChX44ds27qQ4Rj2m1UuD2C9TLTuiu8KMvq1mH1io978dJEpOCHYq6KCQ
- type: loss
value: 0.21338027715682983
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2YyYmVhNzgxMzMyNjJiNzZkYjE1YWM5Y2ZmMTlkNjQ5MThhYjIxNTE5MmE3Y2E0ODllODMyYjAzYWI3ZWRlMSIsInZlcnNpb24iOjF9.ad9rLnOeJZbRi_QQKEBpNNBp_Bt5SHf39ZeWQOZxp7tAK9dc0OK8XOqtihoXcAWDahwuoGiiYtcFNtvueaX6DA
DeBERTa v3 (small) fine-tuned on SST2
This model is a fine-tuned version of microsoft/deberta-v3-small on the GLUE SST2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2134
- Accuracy: 0.9404
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.176 | 1.0 | 4210 | 0.2134 | 0.9404 |
0.1254 | 2.0 | 8420 | 0.2362 | 0.9415 |
0.0957 | 3.0 | 12630 | 0.3187 | 0.9335 |
0.0673 | 4.0 | 16840 | 0.3039 | 0.9266 |
0.0457 | 5.0 | 21050 | 0.3521 | 0.9312 |
Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3