metadata
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: deberta-v3-small
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE QNLI
type: glue
args: qnli
metrics:
- type: accuracy
value: 0.9150649826102873
name: Accuracy
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: qnli
split: validation
metrics:
- type: accuracy
value: 0.914881933003844
name: Accuracy
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDY2NmRlOTEyMzkwMjc5MjVjZDY3MTczMmM2ZTEyZTFiMTk1YmJiYjkxYmYyYTAzNDlhOTU5OTMzZjhhMjkyMSIsInZlcnNpb24iOjF9.aoHEeaQLKI4uwmTgp8Lo9zRoParcSlyDiXZiRrWTqZJIMHgwKgQg52zvYYrZ9HMjjIvWjdW9G_s_DfxqBoekDA
- type: precision
value: 0.9195906432748538
name: Precision
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGMyMjUyNTliOWZjMzkzM2Y3YWU0ODhiNDcyOTAwZjYyZjRiNGQ5NTgyODM4Y2VjNGRlYzNkNTViNmJhNzM0ZSIsInZlcnNpb24iOjF9.fJdQ7M46RGvp_uXk9jvBpl0RFAIGTRAtk8bRQGjNn_uy5weBm6tENL-OclZHwG4uU6LviGTdXmAwn5Ba37hNBw
- type: recall
value: 0.9112640347700108
name: Recall
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2Y2ZmIyZTMzMzM1MTc1OWQ0YWI2ZjU2MzQ5NGU1M2FjNDRiOWViM2NkNWU2M2UzZjljMDJjNmUzZTQ1YWM2MiIsInZlcnNpb24iOjF9.6kVxEkJ-Fojy9HgMevsHovimj3IYp97WO2991zQOFN8nEpPc0hThFk5kMRotS-jPSLFh0mS2PVhQ5x3HIo17Ag
- type: auc
value: 0.9718281171793548
name: AUC
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmZiMGU3MzVjMWNlOTViNmZlYmZjZDRmMzI4OGI4NzAxN2Y5OTE2YmVlMzEzY2ZmODBlODQ1ZjA5MTlhNmEzYyIsInZlcnNpb24iOjF9.byBFlu-eyAmwGQ_tkVi3zaSklTY4G6qenYu1b6hNvYlfPeCuBtVA6qJNF_DI4QWZyEBtdICIyYHzTUHGcAFUBg
- type: f1
value: 0.9154084045843187
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDdmZjk4MzRkMzgyMDY0MjZjZTZiYWNiMTE5MjBiMTBhYWQyYjVjYzk5Mzc1NzQxMGFkMzk4NDUzMjg1YmYzMCIsInZlcnNpb24iOjF9.zYUMpTtIHycUUa5ftwz3hjFb8xk0V5LaUbCDA679Q1BZtXZrEaXtSjbJNKiLBQip1gIwYC1aADcfgSELoBG8AA
- type: loss
value: 0.21421395242214203
name: loss
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGM1YjNiNWFmYzQ3NDJiZTlhNDZiNWIxMjc3M2I1OWJlYzkzYWJkNzVkZDdiNWY4YjNiZDM0NzYxZjQ1OGQ4NSIsInZlcnNpb24iOjF9.qI91L1kE_ZjSOktpGx3OolCkHZuP0isPgKy2EC-YB_M3LEDym4APHVUjhwCgYFCu3-LcVH8syQ7SmI4mrovDAw
DeBERTa-v3-small fine-tuned on QNLI
This model is a fine-tuned version of microsoft/deberta-v3-small on the GLUE QNLI dataset. It achieves the following results on the evaluation set:
- Loss: 0.2143
- Accuracy: 0.9151
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.2823 | 1.0 | 6547 | 0.2143 | 0.9151 |
0.1996 | 2.0 | 13094 | 0.2760 | 0.9103 |
0.1327 | 3.0 | 19641 | 0.3293 | 0.9169 |
0.0811 | 4.0 | 26188 | 0.4278 | 0.9193 |
0.05 | 5.0 | 32735 | 0.5110 | 0.9176 |
Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3