File size: 4,169 Bytes
379525f 48a4ad0 379525f 48a4ad0 379525f 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 8933d68 48a4ad0 379525f c67df39 379525f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: deberta-v3-small
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: GLUE QNLI
type: glue
args: qnli
metrics:
- type: accuracy
value: 0.9150649826102873
name: Accuracy
- task:
type: natural-language-inference
name: Natural Language Inference
dataset:
name: glue
type: glue
config: qnli
split: validation
metrics:
- type: accuracy
value: 0.914881933003844
name: Accuracy
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDY2NmRlOTEyMzkwMjc5MjVjZDY3MTczMmM2ZTEyZTFiMTk1YmJiYjkxYmYyYTAzNDlhOTU5OTMzZjhhMjkyMSIsInZlcnNpb24iOjF9.aoHEeaQLKI4uwmTgp8Lo9zRoParcSlyDiXZiRrWTqZJIMHgwKgQg52zvYYrZ9HMjjIvWjdW9G_s_DfxqBoekDA
- type: precision
value: 0.9195906432748538
name: Precision
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGMyMjUyNTliOWZjMzkzM2Y3YWU0ODhiNDcyOTAwZjYyZjRiNGQ5NTgyODM4Y2VjNGRlYzNkNTViNmJhNzM0ZSIsInZlcnNpb24iOjF9.fJdQ7M46RGvp_uXk9jvBpl0RFAIGTRAtk8bRQGjNn_uy5weBm6tENL-OclZHwG4uU6LviGTdXmAwn5Ba37hNBw
- type: recall
value: 0.9112640347700108
name: Recall
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2Y2ZmIyZTMzMzM1MTc1OWQ0YWI2ZjU2MzQ5NGU1M2FjNDRiOWViM2NkNWU2M2UzZjljMDJjNmUzZTQ1YWM2MiIsInZlcnNpb24iOjF9.6kVxEkJ-Fojy9HgMevsHovimj3IYp97WO2991zQOFN8nEpPc0hThFk5kMRotS-jPSLFh0mS2PVhQ5x3HIo17Ag
- type: auc
value: 0.9718281171793548
name: AUC
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmZiMGU3MzVjMWNlOTViNmZlYmZjZDRmMzI4OGI4NzAxN2Y5OTE2YmVlMzEzY2ZmODBlODQ1ZjA5MTlhNmEzYyIsInZlcnNpb24iOjF9.byBFlu-eyAmwGQ_tkVi3zaSklTY4G6qenYu1b6hNvYlfPeCuBtVA6qJNF_DI4QWZyEBtdICIyYHzTUHGcAFUBg
- type: f1
value: 0.9154084045843187
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDdmZjk4MzRkMzgyMDY0MjZjZTZiYWNiMTE5MjBiMTBhYWQyYjVjYzk5Mzc1NzQxMGFkMzk4NDUzMjg1YmYzMCIsInZlcnNpb24iOjF9.zYUMpTtIHycUUa5ftwz3hjFb8xk0V5LaUbCDA679Q1BZtXZrEaXtSjbJNKiLBQip1gIwYC1aADcfgSELoBG8AA
- type: loss
value: 0.21421395242214203
name: loss
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGM1YjNiNWFmYzQ3NDJiZTlhNDZiNWIxMjc3M2I1OWJlYzkzYWJkNzVkZDdiNWY4YjNiZDM0NzYxZjQ1OGQ4NSIsInZlcnNpb24iOjF9.qI91L1kE_ZjSOktpGx3OolCkHZuP0isPgKy2EC-YB_M3LEDym4APHVUjhwCgYFCu3-LcVH8syQ7SmI4mrovDAw
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# DeBERTa-v3-small fine-tuned on QNLI
This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2143
- Accuracy: 0.9151
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2823 | 1.0 | 6547 | 0.2143 | 0.9151 |
| 0.1996 | 2.0 | 13094 | 0.2760 | 0.9103 |
| 0.1327 | 3.0 | 19641 | 0.3293 | 0.9169 |
| 0.0811 | 4.0 | 26188 | 0.4278 | 0.9193 |
| 0.05 | 5.0 | 32735 | 0.5110 | 0.9176 |
### Framework versions
- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3
|