File size: 4,169 Bytes
379525f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48a4ad0
379525f
 
 
 
 
48a4ad0
379525f
48a4ad0
8933d68
 
 
 
 
 
 
 
 
48a4ad0
8933d68
48a4ad0
8933d68
48a4ad0
 
8933d68
48a4ad0
8933d68
48a4ad0
 
8933d68
48a4ad0
8933d68
48a4ad0
 
8933d68
48a4ad0
8933d68
48a4ad0
 
8933d68
48a4ad0
8933d68
48a4ad0
 
8933d68
48a4ad0
8933d68
48a4ad0
379525f
 
 
 
 
c67df39
379525f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
---
language:
- en
license: mit
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: deberta-v3-small
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: GLUE QNLI
      type: glue
      args: qnli
    metrics:
    - type: accuracy
      value: 0.9150649826102873
      name: Accuracy
  - task:
      type: natural-language-inference
      name: Natural Language Inference
    dataset:
      name: glue
      type: glue
      config: qnli
      split: validation
    metrics:
    - type: accuracy
      value: 0.914881933003844
      name: Accuracy
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDY2NmRlOTEyMzkwMjc5MjVjZDY3MTczMmM2ZTEyZTFiMTk1YmJiYjkxYmYyYTAzNDlhOTU5OTMzZjhhMjkyMSIsInZlcnNpb24iOjF9.aoHEeaQLKI4uwmTgp8Lo9zRoParcSlyDiXZiRrWTqZJIMHgwKgQg52zvYYrZ9HMjjIvWjdW9G_s_DfxqBoekDA
    - type: precision
      value: 0.9195906432748538
      name: Precision
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGMyMjUyNTliOWZjMzkzM2Y3YWU0ODhiNDcyOTAwZjYyZjRiNGQ5NTgyODM4Y2VjNGRlYzNkNTViNmJhNzM0ZSIsInZlcnNpb24iOjF9.fJdQ7M46RGvp_uXk9jvBpl0RFAIGTRAtk8bRQGjNn_uy5weBm6tENL-OclZHwG4uU6LviGTdXmAwn5Ba37hNBw
    - type: recall
      value: 0.9112640347700108
      name: Recall
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiM2Y2ZmIyZTMzMzM1MTc1OWQ0YWI2ZjU2MzQ5NGU1M2FjNDRiOWViM2NkNWU2M2UzZjljMDJjNmUzZTQ1YWM2MiIsInZlcnNpb24iOjF9.6kVxEkJ-Fojy9HgMevsHovimj3IYp97WO2991zQOFN8nEpPc0hThFk5kMRotS-jPSLFh0mS2PVhQ5x3HIo17Ag
    - type: auc
      value: 0.9718281171793548
      name: AUC
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMmZiMGU3MzVjMWNlOTViNmZlYmZjZDRmMzI4OGI4NzAxN2Y5OTE2YmVlMzEzY2ZmODBlODQ1ZjA5MTlhNmEzYyIsInZlcnNpb24iOjF9.byBFlu-eyAmwGQ_tkVi3zaSklTY4G6qenYu1b6hNvYlfPeCuBtVA6qJNF_DI4QWZyEBtdICIyYHzTUHGcAFUBg
    - type: f1
      value: 0.9154084045843187
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDdmZjk4MzRkMzgyMDY0MjZjZTZiYWNiMTE5MjBiMTBhYWQyYjVjYzk5Mzc1NzQxMGFkMzk4NDUzMjg1YmYzMCIsInZlcnNpb24iOjF9.zYUMpTtIHycUUa5ftwz3hjFb8xk0V5LaUbCDA679Q1BZtXZrEaXtSjbJNKiLBQip1gIwYC1aADcfgSELoBG8AA
    - type: loss
      value: 0.21421395242214203
      name: loss
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNGM1YjNiNWFmYzQ3NDJiZTlhNDZiNWIxMjc3M2I1OWJlYzkzYWJkNzVkZDdiNWY4YjNiZDM0NzYxZjQ1OGQ4NSIsInZlcnNpb24iOjF9.qI91L1kE_ZjSOktpGx3OolCkHZuP0isPgKy2EC-YB_M3LEDym4APHVUjhwCgYFCu3-LcVH8syQ7SmI4mrovDAw
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DeBERTa-v3-small fine-tuned on QNLI

This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE QNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2143
- Accuracy: 0.9151

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 5.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2823        | 1.0   | 6547  | 0.2143          | 0.9151   |
| 0.1996        | 2.0   | 13094 | 0.2760          | 0.9103   |
| 0.1327        | 3.0   | 19641 | 0.3293          | 0.9169   |
| 0.0811        | 4.0   | 26188 | 0.4278          | 0.9193   |
| 0.05          | 5.0   | 32735 | 0.5110          | 0.9176   |


### Framework versions

- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.16.1
- Tokenizers 0.10.3