File size: 8,107 Bytes
15d4c2c
 
 
 
 
 
fd09467
15d4c2c
 
 
 
c50d9dc
15d4c2c
 
 
 
 
c50d9dc
15d4c2c
 
 
 
 
c50d9dc
15d4c2c
c50d9dc
15d4c2c
 
 
 
 
141dbff
15d4c2c
 
 
 
 
 
 
 
9c61b9e
 
 
 
15d4c2c
 
 
 
 
 
 
9c61b9e
15d4c2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
---
language:
- en
license: mit
tags:
- generated_from_trainer
- deberta-v3
datasets:
- glue
metrics:
- accuracy
base_model: microsoft/deberta-v3-small
model-index:
- name: ds_results
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: GLUE MNLI
      type: glue
      args: mnli
    metrics:
    - type: accuracy
      value: 0.874593165174939
      name: Accuracy
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# DeBERTa v3 (small) fine-tuned on MNLI

This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on the GLUE MNLI dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4985
- Accuracy: 0.8746

## Model description

[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data. 
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more details and updates.
In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we replaced the MLM objective with the RTD(Replaced Token Detection) objective introduced by ELECTRA for pre-training, as well as some innovations to be introduced in our upcoming paper. Compared to DeBERTa-V2,  our V3 version significantly improves the model performance in downstream tasks.  You can find a simple introduction about the model from the appendix A11 in our original [paper](https://arxiv.org/abs/2006.03654),  but we will provide more details in a separate write-up.
The DeBERTa V3 small model comes with 6 layers and a hidden size of 768. Its total parameter number is 143M since we use a vocabulary containing 128K tokens which introduce 98M parameters in the Embedding layer.  This model was trained using the 160GB data as DeBERTa V2.

## Intended uses & limitations

More information needed

## Training and evaluation data

The Multi-Genre Natural Language Inference Corpus is a crowdsourced collection of sentence pairs with textual entailment annotations. Given a premise sentence and a hypothesis sentence, the task is to predict whether the premise entails the hypothesis (entailment), contradicts the hypothesis (contradiction), or neither (neutral). The premise sentences are gathered from ten different sources, including transcribed speech, fiction, and government reports. The authors of the benchmark use the standard test set, for which they obtained private labels from the RTE authors, and evaluate on both the matched (in-domain) and mismatched (cross-domain) section. They also uses and recommend the SNLI corpus as 550k examples of auxiliary training data.

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3.0

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.7773        | 0.04  | 1000  | 0.5241          | 0.7984   |
| 0.546         | 0.08  | 2000  | 0.4629          | 0.8194   |
| 0.5032        | 0.12  | 3000  | 0.4704          | 0.8274   |
| 0.4711        | 0.16  | 4000  | 0.4383          | 0.8355   |
| 0.473         | 0.2   | 5000  | 0.4652          | 0.8305   |
| 0.4619        | 0.24  | 6000  | 0.4234          | 0.8386   |
| 0.4542        | 0.29  | 7000  | 0.4825          | 0.8349   |
| 0.4468        | 0.33  | 8000  | 0.3985          | 0.8513   |
| 0.4288        | 0.37  | 9000  | 0.4084          | 0.8493   |
| 0.4354        | 0.41  | 10000 | 0.3850          | 0.8533   |
| 0.423         | 0.45  | 11000 | 0.3855          | 0.8509   |
| 0.4167        | 0.49  | 12000 | 0.4122          | 0.8513   |
| 0.4129        | 0.53  | 13000 | 0.4009          | 0.8550   |
| 0.4135        | 0.57  | 14000 | 0.4136          | 0.8544   |
| 0.4074        | 0.61  | 15000 | 0.3869          | 0.8595   |
| 0.415         | 0.65  | 16000 | 0.3911          | 0.8517   |
| 0.4095        | 0.69  | 17000 | 0.3880          | 0.8593   |
| 0.4001        | 0.73  | 18000 | 0.3907          | 0.8587   |
| 0.4069        | 0.77  | 19000 | 0.3686          | 0.8630   |
| 0.3927        | 0.81  | 20000 | 0.4008          | 0.8593   |
| 0.3958        | 0.86  | 21000 | 0.3716          | 0.8639   |
| 0.4016        | 0.9   | 22000 | 0.3594          | 0.8679   |
| 0.3945        | 0.94  | 23000 | 0.3595          | 0.8679   |
| 0.3932        | 0.98  | 24000 | 0.3577          | 0.8645   |
| 0.345         | 1.02  | 25000 | 0.4080          | 0.8699   |
| 0.2885        | 1.06  | 26000 | 0.3919          | 0.8674   |
| 0.2858        | 1.1   | 27000 | 0.4346          | 0.8651   |
| 0.2872        | 1.14  | 28000 | 0.4105          | 0.8674   |
| 0.3002        | 1.18  | 29000 | 0.4133          | 0.8708   |
| 0.2954        | 1.22  | 30000 | 0.4062          | 0.8667   |
| 0.2912        | 1.26  | 31000 | 0.3972          | 0.8708   |
| 0.2958        | 1.3   | 32000 | 0.3713          | 0.8732   |
| 0.293         | 1.34  | 33000 | 0.3717          | 0.8715   |
| 0.3001        | 1.39  | 34000 | 0.3826          | 0.8716   |
| 0.2864        | 1.43  | 35000 | 0.4155          | 0.8694   |
| 0.2827        | 1.47  | 36000 | 0.4224          | 0.8666   |
| 0.2836        | 1.51  | 37000 | 0.3832          | 0.8744   |
| 0.2844        | 1.55  | 38000 | 0.4179          | 0.8699   |
| 0.2866        | 1.59  | 39000 | 0.3969          | 0.8681   |
| 0.2883        | 1.63  | 40000 | 0.4000          | 0.8683   |
| 0.2832        | 1.67  | 41000 | 0.3853          | 0.8688   |
| 0.2876        | 1.71  | 42000 | 0.3924          | 0.8677   |
| 0.2855        | 1.75  | 43000 | 0.4177          | 0.8719   |
| 0.2845        | 1.79  | 44000 | 0.3877          | 0.8724   |
| 0.2882        | 1.83  | 45000 | 0.3961          | 0.8713   |
| 0.2773        | 1.87  | 46000 | 0.3791          | 0.8740   |
| 0.2767        | 1.91  | 47000 | 0.3877          | 0.8779   |
| 0.2772        | 1.96  | 48000 | 0.4022          | 0.8690   |
| 0.2816        | 2.0   | 49000 | 0.3837          | 0.8732   |
| 0.2068        | 2.04  | 50000 | 0.4644          | 0.8720   |
| 0.1914        | 2.08  | 51000 | 0.4919          | 0.8744   |
| 0.2           | 2.12  | 52000 | 0.4870          | 0.8702   |
| 0.1904        | 2.16  | 53000 | 0.5038          | 0.8737   |
| 0.1915        | 2.2   | 54000 | 0.5232          | 0.8711   |
| 0.1956        | 2.24  | 55000 | 0.5192          | 0.8747   |
| 0.1911        | 2.28  | 56000 | 0.5215          | 0.8761   |
| 0.2053        | 2.32  | 57000 | 0.4604          | 0.8738   |
| 0.2008        | 2.36  | 58000 | 0.5162          | 0.8715   |
| 0.1971        | 2.4   | 59000 | 0.4886          | 0.8754   |
| 0.192         | 2.44  | 60000 | 0.4921          | 0.8725   |
| 0.1937        | 2.49  | 61000 | 0.4917          | 0.8763   |
| 0.1931        | 2.53  | 62000 | 0.4789          | 0.8778   |
| 0.1964        | 2.57  | 63000 | 0.4997          | 0.8721   |
| 0.2008        | 2.61  | 64000 | 0.4748          | 0.8756   |
| 0.1962        | 2.65  | 65000 | 0.4840          | 0.8764   |
| 0.2029        | 2.69  | 66000 | 0.4889          | 0.8767   |
| 0.1927        | 2.73  | 67000 | 0.4820          | 0.8758   |
| 0.1926        | 2.77  | 68000 | 0.4857          | 0.8762   |
| 0.1919        | 2.81  | 69000 | 0.4836          | 0.8749   |
| 0.1911        | 2.85  | 70000 | 0.4859          | 0.8742   |
| 0.1897        | 2.89  | 71000 | 0.4853          | 0.8766   |
| 0.186         | 2.93  | 72000 | 0.4946          | 0.8768   |
| 0.2011        | 2.97  | 73000 | 0.4851          | 0.8767   |


### Framework versions

- Transformers 4.13.0.dev0
- Pytorch 1.10.0+cu111
- Datasets 1.15.1
- Tokenizers 0.10.3