File size: 2,413 Bytes
c1ad50a
 
 
 
 
6bfb409
 
 
 
 
c1ad50a
 
 
 
 
 
 
 
 
 
 
6bfb409
 
 
 
 
 
c1ad50a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f7c145
c1ad50a
6bfb409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1ad50a
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: mit
base_model: microsoft/deberta-v3-small
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
- f1
model-index:
- name: deberta-v3-ft-news-sentiment-analisys
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# deberta-v3-ft-news-sentiment-analisys

This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1175
- Precision: 0.9780
- Recall: 0.9780
- Accuracy: 0.9780
- F1: 0.9780

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:|
| No log        | 1.0   | 64   | 0.3711          | 0.8282    | 0.8282 | 0.8282   | 0.8282 |
| No log        | 2.0   | 128  | 0.1800          | 0.9559    | 0.9559 | 0.9559   | 0.9559 |
| No log        | 3.0   | 192  | 0.1296          | 0.9604    | 0.9604 | 0.9604   | 0.9604 |
| No log        | 4.0   | 256  | 0.1228          | 0.9736    | 0.9736 | 0.9736   | 0.9736 |
| No log        | 5.0   | 320  | 0.1352          | 0.9736    | 0.9736 | 0.9736   | 0.9736 |
| No log        | 6.0   | 384  | 0.1785          | 0.9648    | 0.9648 | 0.9648   | 0.9648 |
| No log        | 7.0   | 448  | 0.1175          | 0.9780    | 0.9780 | 0.9780   | 0.9780 |
| 0.1612        | 8.0   | 512  | 0.1344          | 0.9692    | 0.9692 | 0.9692   | 0.9692 |
| 0.1612        | 9.0   | 576  | 0.1274          | 0.9648    | 0.9648 | 0.9648   | 0.9648 |
| 0.1612        | 10.0  | 640  | 0.1242          | 0.9692    | 0.9692 | 0.9692   | 0.9692 |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0