File size: 2,710 Bytes
f525294
 
619dc89
 
f525294
 
7b7ba1b
 
f525294
 
 
 
 
619dc89
 
f525294
 
 
619dc89
 
2e39511
1829db2
f525294
 
 
 
 
619dc89
 
2e39511
619dc89
f525294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
lang:
- en
tags:
- generated_from_trainer
- spam
- spam detection
metrics:
- precision
- recall
- accuracy
- f1
datasets:
- SetFit/enron_spam
model-index:
- name: bert-tiny-finetuned-enron-spam-detection
  results: []
  
widget:
- text: "buy online and save viagra price for this high demand med best price for this high demand med best price for this high demand med buy nowbuy nowbuy price for this high demand med best price for this high demand med best price for this high demand med buy nowbuy nowbuy nowcialis soft price for this high demand med best price for this high demand med best price for this high demand med buy nowbuy nowbuy your penis width ( girth ) by 20 % gain up to 3 + full inches in length buy nowbuy now"
- text: "aquila dave marks just got a call from someone at aquila saying they got a corporate - wide e - mail saying they shouldn ' t trade on enrononline anymore . - r"
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BERT-Tiny fine-tuned on Enron Spam Detection

This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) (aka BERT-Tiny) on an [SetFit/enron_spam](https://huggingface.co/datasets/SetFit/enron_spam) for `Spam Dectection` downstream task.


It achieves the following results on the evaluation set:
- Loss: 0.0593
- Precision: 0.9851
- Recall: 0.9871
- Accuracy: 0.986
- F1: 0.9861

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:|:------:|
| 0.1125        | 1.0   | 1983 | 0.0797          | 0.9839    | 0.9692 | 0.9765   | 0.9765 |
| 0.061         | 2.0   | 3966 | 0.0618          | 0.9822    | 0.9861 | 0.984    | 0.9842 |
| 0.0486        | 3.0   | 5949 | 0.0593          | 0.9851    | 0.9871 | 0.986    | 0.9861 |
| 0.048         | 4.0   | 7932 | 0.0588          | 0.9870    | 0.9821 | 0.9845   | 0.9846 |


### Framework versions

- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Datasets 2.6.1
- Tokenizers 0.13.1